Alena Khmelinskaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7939926/publications.pdf

Version: 2024-02-01

1125617	
13	
g-index	
657	
citing authors	

#	Article	IF	CITATIONS
1	Membrane sculpting by curved DNA origami scaffolds. Nature Communications, 2018, 9, 811.	5.8	173
2	A diffusiophoretic mechanism for ATP-driven transport without motor proteins. Nature Physics, 2021, 17, 850-858.	6.5	53
3	Control of lipid domain organization by a biomimetic contractile actomyosin cortex. ELife, 2017, 6, .	2.8	46
4	Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers. Langmuir, 2018, 34, 14921-14931.	1.6	39
5	Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes. Journal Physics D: Applied Physics, 2016, 49, 194001.	1.3	31
6	Single Particle Tracking and Super-Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion and Lattice Assembly of DNA Origami. ACS Nano, 2019, 13, 996-1002.	7.3	28
7	Changes in Membrane Organization upon Spontaneous Insertion of 2-Hydroxylated Unsaturated Fatty Acids in the Lipid Bilayer. Langmuir, 2014, 30, 2117-2128.	1.6	26
8	Plasmonic Nanosensors Reveal a Height Dependence of MinDE Protein Oscillations on Membrane Features. Journal of the American Chemical Society, 2018, 140, 17901-17906.	6.6	26
9	Structure-based design of novel polyhedral protein nanomaterials. Current Opinion in Microbiology, 2021, 61, 51-57.	2.3	24
10	Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Frontiers in Cell and Developmental Biology, 2020, 8, 337.	1.8	20
11	FCS Analysis of Protein Mobility on Lipid Monolayers. Biophysical Journal, 2018, 114, 2444-2454.	0.2	10
12	Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21372-21380.	4.0	8
13	Membraneâ€Mediated Selfâ€Organization of Rodâ€Like DNA Origami on Supported Lipid Bilayers. Advanced Materials Interfaces, 2021, 8, 2101094.	1.9	4
14	Sterol Properties Required for Microdomain Formation: From Model Systems to Living Yeast and Mammalian Cells. Biophysical Journal, 2012, 102, 298a.	0.2	0
15	Steps for Constructing Synthetic Membrane Curvature-Inducing DNA Origami Scaffolds. Biophysical Journal, 2016, 110, 199a.	0.2	0
16	Breaking the Symmetry of Protein Assemblies: Structural Flexibility as a De Novo Design Principle. Biophysical Journal, 2020, 118, 516a-517a.	0.2	0
17	Molecular Transport and Spatial Sorting of Membrane-bound DNA Nanostructures by a Biological Reaction-diffusion System. Biophysical Journal, 2020, 118, 165a.	0.2	O