Santiago Gutiérrez MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6200-6204.	3.3	174
2	The ThPG1 Endopolygalacturonase Is Required for the <i>Trichoderma harzianum</i> –Plant Beneficial Interaction. Molecular Plant-Microbe Interactions, 2009, 22, 1021-1031.	1.4	173
3	The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 2013, 16, 69-80.	1.1	173
4	Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 2010, 167, 659-665.	1.6	161
5	Involvement of Trichoderma Trichothecenes in the Biocontrol Activity and Induction of Plant Defense-Related Genes. Applied and Environmental Microbiology, 2012, 78, 4856-4868.	1.4	143
6	Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathogens, 2018, 14, e1006946.	2.1	141
7	Identification of Loci and Functional Characterization of Trichothecene Biosynthesis Genes in Filamentous Fungi of the Genus Trichoderma. Applied and Environmental Microbiology, 2011, 77, 4867-4877.	1.4	124
8	Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in Plant Science, 2015, 6, 685.	1.7	116
9	Age-Related Clinical, Serological, and Histopathological Features of Celiac Disease. American Journal of Gastroenterology, 2008, 103, 2360-2365.	0.2	114
10	Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 2011, 48, 285-296.	0.9	110
11	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	1.1	107
12	The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. Journal of Bacteriology, 1992, 174, 3056-3064.	1.0	92
13	Functional Analysis of the <i>Trichoderma harzianum nox1</i> Gene, Encoding an NADPH Oxidase, Relates Production of Reactive Oxygen Species to Specific Biocontrol Activity against Pythium ultimum. Applied and Environmental Microbiology, 2011, 77, 3009-3016.	1.4	92
14	Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Applied Microbiology and Biotechnology, 1996, 44, 597-604.	1.7	90
15	Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genetics and Biology, 2013, 53, 22-33.	0.9	89
16	Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome 1 (10.4 Mb) in Penicillium chrysogenum. Molecular Genetics and Genomics, 1993, 241-241, 573-578.	2.4	80
17	The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. FEBS Journal, 1993, 215, 323-332.	0.2	80
18	Cloning and characterization of the erg1 gene of Trichoderma harzianum: Effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genetics and Biology, 2006, 43, 164-178.	0.9	77

#	Article	IF	CITATIONS
19	The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Scientific Reports, 2016, 5, 17998.	1.6	77
20	Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Applied Microbiology and Biotechnology, 1997, 48, 606-614.	1.7	74
21	The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Molecular Genetics and Genomics, 2002, 267, 673-683.	1.0	73
22	A Novel Epimerization System in Fungal Secondary Metabolism Involved in the Conversion of Isopenicillin N into Penicillin N inAcremonium chrysogenum. Journal of Biological Chemistry, 2002, 277, 46216-46225.	1.6	71
23	Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genetics and Biology, 2008, 45, 1506-1513.	0.9	68
24	Autonomously replicating plasmids carrying theAMA1 region inPenicillium chrysogenum. Current Genetics, 1996, 29, 482-489.	0.8	65
25	Production of trichodiene by <scp><i>T</i></scp> <i>richoderma harzianum</i> alters the perception of this biocontrol strain by plants and antagonized fungi. Environmental Microbiology, 2015, 17, 2628-2646.	1.8	64
26	Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Molecular Genetics and Genomics, 1991, 225, 56-64.	2.4	63
27	Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek, 1999, 75, 21-31.	0.7	63
28	Cloning, characterization of the acyl-CoA : 6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Molecular Genetics and Genomics, 1990, 221, 322-330.	2.4	62
29	Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek, 1999, 75, 81-94.	0.7	61
30	Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genomics, 2006, 7, 193.	1.2	60
31	Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genetics and Biology, 2007, 44, 269-283.	0.9	60
32	Secondary Metabolism and Antimicrobial Metabolites of Trichoderma. , 2014, , 125-137.		59
33	Novel aspinolide production by <scp><i>T</i></scp> <i>richoderma arundinaceum</i> with a potential role in <scp><i>B</i></scp> <i>otrytis cinerea</i> antagonistic activity and plant defence priming. Environmental Microbiology, 2015, 17, 1103-1118.	1.8	56
34	Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. Journal of Bacteriology, 1994, 176, 985-991.	1.0	53
35	Thaumatin Production in <i>Aspergillus awamori</i> by Use of Expression Cassettes with Strong Fungal Promoters and High Gene Dosage. Applied and Environmental Microbiology, 1999, 65, 1168-1174.	1.4	53
36	Silencing of the Aspergillopepsin B (pepB) Gene of Aspergillus awamori by Antisense RNA Expression or Protease Removal by Gene Disruption Results in a Large Increase in Thaumatin Production. Applied and Environmental Microbiology, 2002, 68, 3550-3559.	1.4	49

#	Article	IF	CITATIONS
37	Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases). Journal of Bacteriology, 1992, 174, 7063-7067.	1.0	47
38	Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycological Research, 2005, 109, 1397-1406.	2.5	47
39	Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum – Rhizoctonia solani Interaction. Frontiers in Plant Science, 2016, 7, 1109.	1.7	46
40	Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings. Toxins, 2011, 3, 1220-1232.	1.5	45
41	A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. Journal of Microbiology, 2006, 44, 383-95.	1.3	43
42	A Novel Heptameric Sequence (TTAGTAA) Is the Binding Site for a Protein Required for High Level Expression of pcbAB, the First Gene of the Penicillin Biosynthesis in Penicillium chrysogenum. Journal of Biological Chemistry, 2000, 275, 2423-2430.	1.6	42
43	Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium -mediated DNA transfer. Current Genetics, 2003, 43, 447-452.	0.8	42
44	Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology (United Kingdom), 1999, 145, 317-324.	0.7	41
45	Detection of putative peptide synthetase genes inTrichodermaspecies: Application of this method to the cloning of a gene fromT. harzianumCECT 2413. FEMS Microbiology Letters, 2005, 244, 139-148.	0.7	41
46	ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genetics and Biology, 2006, 43, 234-246.	0.9	41
47	Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes. Frontiers in Plant Science, 2017, 8, 880.	1.7	40
48	The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T. harzianum. Current Genetics, 2007, 52, 45-53.	0.8	39
49	Characterization of the lys2 gene of Penicillium chrysogenum encoding α-aminoadipic acid reductase. Molecular Genetics and Genomics, 1998, 259, 549-556.	2.4	38
50	Targeted Inactivation of the mecB Gene, Encoding Cystathionine-Î ³ -Lyase, Shows that the Reverse Transsulfuration Pathway Is Required for High-Level Cephalosporin Biosynthesis in Acremonium chrysogenum C10 but Not for Methionine Induction of the Cephalosporin Genes. Journal of Bacteriology, 2001, 183, 1765-1772.	1.0	38
51	Trichodiene Production in a <i>Trichoderma harzianum erg1-</i> Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression. Molecular Plant-Microbe Interactions, 2015, 28, 1181-1197.	1.4	38
52	Genes for ?-lactam antibiotic biosynthesis. Antonie Van Leeuwenhoek, 1995, 67, 181-200.	0.7	37
53	Characterization and nitrogen-source regulation at the transcriptional level of the gdh A gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Current Genetics, 1998, 34, 50-59.	0.8	37
54	Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum <i>tri4</i> Gene in T. harzianum. Applied and Environmental Microbiology, 2015, 81, 6355-6366.	1.4	37

#	Article	IF	CITATIONS
55	Effect of Trichoderma velutinum and Rhizoctonia solani on the Metabolome of Bean Plants (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 2019, 20, 549.	1.8	36
56	Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene. Frontiers in Microbiology, 2016, 7, 1182.	1.5	34
57	Intrachromosomal recombination between direct repeats in Penicillium chrysogenum: gene conversion and deletion events. Molecular Genetics and Genomics, 1999, 261, 994-1000.	2.4	33
58	Overexpression and lack of degradation of thaumatin in an aspergillopepsin A-defective mutant of Aspergillus awamori containing an insertion in the pep  A gene. Applied Microbiology and Biotechnology, 2000, 54, 772-777.	1.7	33
59	Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae:) Tj ETQq1 1 0.78	34 31 34 rgB1	「/®verlock 1
60	Expression of a synthetic copy of the bovine chymosin gene inAspergillus awamorifrom constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnology and Bioengineering, 2003, 83, 249-259.	1.7	29
61	Cloning and characterization of the Thcut1 gene encoding a cutinase of Trichoderma harzianum T34. Current Genetics, 2008, 54, 301-312.	0.8	29
62	Colonization of Vitis vinifera L. by the Endophyte Trichoderma sp. Strain T154: Biocontrol Activity Against Phaeoacremonium minimum. Frontiers in Plant Science, 2020, 11, 1170.	1.7	29
63	Molecular characterization of three loss-of-function mutations in the isopenicillin N-acyltransferase gene (penDE) of Penicillium chrysogenum. Journal of Bacteriology, 1994, 176, 4941-4948.	1.0	28
64	The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei. Frontiers in Microbiology, 2015, 6, 1181.	1.5	28
65	Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genetics and Biology, 2018, 119, 29-46.	0.9	27
66	Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochemical Journal, 1999, 337, 379-385.	1.7	26
67	Trichothecenes and aspinolides produced by <i>Trichoderma arundinaceum</i> regulate expression of <i>Botrytis cinerea</i> genes involved in virulence and growth. Environmental Microbiology, 2016, 18, 3991-4004.	1.8	25
68	Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. Gene, 1999, 226, 51-59.	1.0	23
69	Effect of trichodiene production by Trichoderma harzianum on Acanthoscelides obtectus. Journal of Stored Products Research, 2018, 77, 231-239.	1.2	23
70	Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes. Journal of Applied Microbiology, 2014, 117, 812-823.	1.4	22
71	Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Applied Microbiology and Biotechnology, 2020, 104, 5185-5199.	1.7	21
72	Involvement of the Transcriptional Coactivator ThMBF1 in the Biocontrol Activity of Trichoderma harzianum. Frontiers in Microbiology, 2017, 8, 2273.	1.5	20

#	Article	IF	CITATIONS
73	Investigations of Trichoderma spp. and Beauveria bassiana as biological control agent for Xylotrechus arvicola, a major insect pest in Spanish vineyards. Journal of Economic Entomology, 2018, 111, 2585-2591.	0.8	20
74	Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek, 1994, 65, 227-243.	0.7	19
75	Characterization of the bip gene of Aspergillus awamori encoding a protein with an HDEL retention signal homologous to the mammalian BiP involved in polypeptide secretion. Current Genetics, 1997, 32, 139-146.	0.8	19
76	The isopenicillin N acyltransferases of Aspergillus nidulans and Penicillium chrysogenum differ in their ability to maintain the 40-kDa alphabeta heterodimer in an undissociated form. FEBS Journal, 2003, 270, 1958-1968.	0.2	19
77	Overexpression of the lys1 gene in Penicillium chrysogenum : homocitrate synthase levels, α-aminoadipic acid pool and penicillin production. Applied Microbiology and Biotechnology, 2000, 54, 69-77.	1.7	18
78	Detection of peptaibols and partial cloning of a putative peptaibol synthetase gene fromT. harzianum CECT 2413. Folia Microbiologica, 2006, 51, 114-120.	1.1	18
79	TvDim1 of Trichoderma virens is involved in redox-processes and confers resistance to oxidative stresses. Current Genetics, 2010, 56, 63-73.	0.8	18
80	Relevance of the deletion of the <i>Tatri4</i> gene in the secondary metabolome of <i>Trichoderma arundinaceum</i> . Organic and Biomolecular Chemistry, 2018, 16, 2955-2965.	1.5	18
81	Three genes hrdB, hrdD and hrdT of Streptomyces griseus IMRU 3570, encoding sigma factor-like proteins, are differentially expressed under specific nutritional conditions. Gene, 1995, 153, 41-48.	1.0	17
82	Cloning and characterization of the gene cah B encoding a cephalosporin C acetylhydrolase from Acremonium chrysogenum. Applied Microbiology and Biotechnology, 2001, 57, 350-356.	1.7	16
83	Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genetics and Biology, 2019, 122, 31-46.	0.9	16
84	Identification of plant genes putatively involved in the perception of fungal ergosterolâ€squalene. Journal of Integrative Plant Biology, 2020, 62, 927-947.	4.1	16
85	Genome-wide analysis of differentially expressed genes from Penicillium chrysogenum grown with a repressing or a non-repressing carbon source. Current Genetics, 2006, 49, 85-96.	0.8	15
86	Co-transformation with autonomous replicating and integrative plasmids in Penicillium chrysogenum is highly efficient and leads in some cases to rescue of the intact integrative plasmid. Fungal Genetics and Biology, 2003, 40, 83-92.	0.9	14
87	Botrydial and botcinins produced by <scp><i>B</i></scp> <i>otrytis cinerea</i> regulate the expression of <scp><i>T</i></scp> <i>richoderma arundinaceum</i> genes involved in trichothecene biosynthesis. Molecular Plant Pathology, 2016, 17, 1017-1031.	2.0	14
88	Subcellular localization of the homocitrate synthase in Penicillium chrysogenum. Molecular Genetics and Genomics, 2002, 266, 711-719.	1.0	13
89	A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Applied Microbiology and Biotechnology, 2019, 103, 8087-8103.	1.7	13
90	Requirement of Two Acyltransferases for 4- <i>O</i> -Acylation during Biosynthesis of Harzianum A, an Antifungal Trichothecene Produced by <i>Trichoderma arundinaceum</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 723-734.	2.4	12

4

#	Article	IF	CITATIONS
91	Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochemical Journal, 1999, 337, 379.	1.7	10
92	Characterization of the reverse transsulfuration gene mecB of Acremonium chrysogenum, which encodes a functional cystathionine-Î ³ -lyase. Molecular Genetics and Genomics, 2001, 264, 746-754.	1.0	10
93	Spores of Trichoderma strains sprayed over Acanthoscelides obtectus and Phaseolus vulgaris L. beans: Effects in the biology of the bean weevil. Journal of Stored Products Research, 2020, 88, 101666.	1.2	10
94	Use of the volatile trichodiene to reduce Fusarium head blight and trichothecene contamination in wheat. Microbial Biotechnology, 2022, 15, 513-527.	2.0	10
95	Volatile Organic Compound Chamber: A Novel Technology for Microbiological Volatile Interaction Assays. Journal of Fungi (Basel, Switzerland), 2021, 7, 248.	1.5	10
96	The Influence of Temperature on the Growth, Sporulation, Colonization, and Survival of Trichoderma spp. in Grapevine Pruning Wounds. Agronomy, 2021, 11, 1771.	1.3	10
97	Distribution, Function, and Evolution of a Gene Essential for Trichothecene Toxin Biosynthesis in Trichoderma. Frontiers in Microbiology, 2021, 12, 791641.	1.5	10
98	Effect of trichodiene synthase encoding gene expression in Trichoderma strains on their effectiveness in the control of Acanthoscelides obtectus. Journal of Stored Products Research, 2019, 83, 275-280.	1.2	9
99	Synthesis of Trichodermin Derivatives and Their Antimicrobial and Cytotoxic Activities. Molecules, 2019, 24, 3811.	1.7	9
100	Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Applied Microbiology and Biotechnology, 1996, 44, 597-604.	1.7	8
101	The specific transport system for lysine is fully inhibited by ammonium in Penicillium chrysogenum: an ammonium-insensitive system allows uptake in carbon-starved cells. Antonie Van Leeuwenhoek, 2000, 77, 91-100.	0.7	6
102	Influence of Fungicide Application and Vine Age on Trichoderma Diversity as Source of Biological Control Agents. Agronomy, 2021, 11, 446.	1.3	6
103	Influence of Physicochemical Characteristics of Bean Crop Soil in Trichoderma spp. Development. Agronomy, 2021, 11, 274.	1.3	6
104	Fungal Horizontal Gene Transfer: A History Beyond the Phylogenetic Kingdoms. , 2019, , 315-336.		5
105	Self-Inhibitory Activity of Trichoderma Soluble Metabolites and Their Antifungal Effects on Fusarium oxysporum. Journal of Fungi (Basel, Switzerland), 2020, 6, 176.	1.5	5
106	Characterization of the gdhA Gene from the Phytopathogen Botrytis cinerea. Fungal Genetics and Biology, 2001, 34, 193-206.	0.9	4
107	Trichoderma Transformation Methods. Fungal Biology, 2015, , 41-48.	0.3	4

108 Trichoderma trichothecenes. , 2020, , 281-301.

#	Article	IF	CITATIONS
109	Influence of Substrates in the Development of Bean and in Pathogenicity of Rhizoctonia solani JG Kühn. Agronomy, 2020, 10, 707.	1.3	4
110	Evaluation of substrates and additives to Trichoderma harzianum development by qPCR. Agronomy Journal, 2020, 112, 3188-3194.	0.9	4
111	Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Current Genetics, 1996, 29, 482-489.	0.8	4
112	Novel culture chamber to evaluate in vitro plant-microbe volatile interactions: Effects of Trichoderma harzianum volatiles on wheat plantlets. Plant Science, 2022, 320, 111286.	1.7	4
113	Organic and Conventional Bean Pesticides in Development of Autochthonous Trichoderma Strains. Journal of Fungi (Basel, Switzerland), 2022, 8, 603.	1.5	4
114	Volatile-mediated interactions between Trichoderma harzianum and Acanthoscelides obtectus: A novel in vitro methodology to evaluate the impact of microbial volatile compounds on dry grain storage pests. Biological Control, 2022, 169, 104868.	1.4	3
115	Molecular genetics as a tool to remove bottlenecks in the biosynthesis of ?-lactam antibiotics. World Journal of Microbiology and Biotechnology, 1996, 12, 517-523.	1.7	2
116	Intrachromosomal recombination after targeted monocopy integration in Penicillium chrysogenum : stabilization of the direct repeats to prevent loss of the inserted gene. Current Genetics, 2001, 39, 231-236.	0.8	2
117	Insecticidal activity of Trichoderma harzianum against Xylotrechus arvicola and Acanthoscelides obtectus inmature stages. Planta Medica, 2016, 81, S1-S381.	0.7	2
118	Germination and Agronomic Traits of Phaseolus vulgaris L. Beans Sprayed with Trichoderma Strains and Attacked by Acanthoscelides obtectus. Agronomy, 2021, 11, 2130.	1.3	2
119	Editorial: Designing Bio-Formulations Based on Organic Amendments, Beneficial Microbes and Their Metabolites. Frontiers in Microbiology, 2021, 12, 832149.	1.5	2
120	Effect of Farnesol, a compound produced by Trichoderma when growing on bean (Phaseolus vulgaris) Tj ETQq0 () 0 rgBT /(Overlock 10 T
121	Use of VOC Chambers to evaluate the impact of microbial volatile compounds on dry grain insect pests. MethodsX, 2022, 9, 101734.	0.7	1
122	USO DE NUTRAGREEN® COMO TRANSPORTADOR COLOIDAL PARA REDUCIR EL USO DE FERTILIZANTES Y PESTICIDAS EN PERAL. , 0, , 220-227.		0
123	Fungal Secondary Metabolism. , 2021, , 54-63.		0

Lippia spp. Essential Oil as a Control Agent against Acanthoscelides obtectus, an Insect Pest in Phaseolus vulgaris Beans. , 0, , . 124