Michael J Lenardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7939663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The TNF and TNF Receptor Superfamilies. Cell, 2001, 104, 487-501.	28.9	3,271
2	A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 2020, 20, 651-668.	22.7	2,160
3	30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 2017, 168, 37-57.	28.9	1,437
4	Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell, 1995, 81, 935-946.	28.9	1,430
5	Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8. Science, 2004, 304, 1500-1502.	12.6	1,197
6	Induction of apoptosis in mature T cells by tumour necrosis factor. Nature, 1995, 377, 348-351.	27.8	1,123
7	CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation–mediated apoptosis of effector CD4+ T cells. Nature Immunology, 2007, 8, 1353-1362.	14.5	1,012
8	lnterleukin-2 programs mouse $\hat{l}\pm\hat{l}^2$ T lymphocytes for apoptosis. Nature, 1991, 353, 858-861.	27.8	1,007
9	MATURE T LYMPHOCYTE APOPTOSIS—Immune Regulation in a Dynamic and Unpredictable Antigenic Environment. Annual Review of Immunology, 1999, 17, 221-253.	21.8	881
10	A Domain in TNF Receptors That Mediates Ligand-Independent Receptor Assembly and Signaling. Science, 2000, 288, 2351-2354.	12.6	769
11	Immune dysregulation in human subjects with heterozygous germline mutations in <i>CTLA4</i> . Science, 2014, 345, 1623-1627.	12.6	745
12	Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature, 2002, 419, 395-399.	27.8	648
13	Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4952-4957.	7.1	619
14	Fas Preassociation Required for Apoptosis Signaling and Dominant Inhibition by Pathogenic Mutations. Science, 2000, 288, 2354-2357.	12.6	600
15	Inherited Human Caspase 10 Mutations Underlie Defective Lymphocyte and Dendritic Cell Apoptosis in Autoimmune Lymphoproliferative Syndrome Type II. Cell, 1999, 98, 47-58.	28.9	598
16	Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 2015, 349, 436-440.	12.6	580
17	Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nature Immunology, 2014, 15, 88-97.	14.5	575
18	The involvement of NF-κB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell. 1989. 57. 287-294.	28.9	525

#	Article	IF	CITATIONS
19	Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature, 2011, 475, 471-476.	27.8	465
20	A Role for Tumor Necrosis Factor Receptor-2 and Receptor-interacting Protein in Programmed Necrosis and Antiviral Responses. Journal of Biological Chemistry, 2003, 278, 51613-51621.	3.4	406
21	Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood, 2010, 116, e35-e40.	1.4	405
22	Requirement for Caspase-8 in NF-ÂB Activation by Antigen Receptor. Science, 2005, 307, 1465-1468.	12.6	404
23	The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunology, 2000, 1, 469-474.	14.5	394
24	Clinical, Immunologic, and Genetic Features of an Autoimmune Lymphoproliferative Syndrome Associated With Abnormal Lymphocyte Apoptosis. Blood, 1997, 89, 1341-1348.	1.4	358
25	Membrane Oligomerization and Cleavage Activates the Caspase-8 (FLICE/MACHα1) Death Signal. Journal of Biological Chemistry, 1998, 273, 4345-4349.	3.4	330
26	Ribosomal Protein S3: A KH Domain Subunit in NF-κB Complexes that Mediates Selective Gene Regulation. Cell, 2007, 131, 927-939.	28.9	305
27	Cell death attenuation by `Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death and Differentiation, 1998, 5, 271-288.	11.2	293
28	Mg ²⁺ Regulates Cytotoxic Functions of NK and CD8 T Cells in Chronic EBV Infection Through NKG2D. Science, 2013, 341, 186-191.	12.6	269
29	Heterozygous splice mutation in <i>PIK3R1</i> causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. Journal of Experimental Medicine, 2014, 211, 2537-2547.	8.5	249
30	CD4+CD25+Foxp3+ Regulatory T Cells Promote Th17 Cells InÂVitro and Enhance Host Resistance in Mouse Candida albicans Th17 Cell Infection Model. Immunity, 2011, 34, 422-434.	14.3	244
31	Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. European Journal of Immunology, 1993, 23, 1552-1560.	2.9	242
32	Effective "activated PI3Kδ syndromeâ€â€"targeted therapy with the PI3Kδ inhibitor leniolisib. Blood, 2017, 130, 2307-2316.	1.4	227
33	NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature, 1998, 392, 941-945.	27.8	225
34	Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase l´ syndrome 2: AÂcohort study. Journal of Allergy and Clinical Immunology, 2016, 138, 210-218.e9.	2.9	215
35	NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8953-8958.	7.1	212
36	Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood, 2014, 123, 1989-1999.	1.4	204

#	Article	IF	CITATIONS
37	Autoimmune Lymphoproliferative Syndrome with Defective Fas: Genotype Influences Penetrance. American Journal of Human Genetics, 1999, 64, 1002-1014.	6.2	198
38	Signaling by the TNF Receptor Superfamily and T Cell Homeostasis. Immunity, 2000, 13, 419-422.	14.3	187
39	HIV-1 Directly Kills CD4+ T Cells by a Fas-independent Mechanism. Journal of Experimental Medicine, 1998, 187, 1113-1122.	8.5	184
40	GENETIC DISORDERS OF PROGRAMMED CELL DEATH IN THE IMMUNE SYSTEM. Annual Review of Immunology, 2006, 24, 321-352.	21.8	178
41	Congenital B cell lymphocytosis explained by novel germline <i>CARD11</i> mutations. Journal of Experimental Medicine, 2012, 209, 2247-2261.	8.5	167
42	Regulation of thymocyte development from immature progenitors. Current Opinion in Immunology, 1996, 8, 215-224.	5.5	155
43	XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood, 2014, 123, 2148-2152.	1.4	147
44	CD55 Deficiency, Early-Onset Protein-Losing Enteropathy, and Thrombosis. New England Journal of Medicine, 2017, 377, 52-61.	27.0	138
45	SPOTS. Journal of Cell Biology, 2004, 167, 735-744.	5.2	137
46	Essential Role for Caspase-8 in Toll-like Receptors and NFκB Signaling. Journal of Biological Chemistry, 2007, 282, 7416-7423.	3.4	137
47	Casein kinase 1α governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival. Nature, 2009, 458, 92-96.	27.8	136
48	Combined immunodeficiency and Epstein-Barr virus–induced B cell malignancy in humans with inherited CD70 deficiency. Journal of Experimental Medicine, 2017, 214, 91-106.	8.5	134
49	Competitive Control of Independent Programs of Tumor Necrosis Factor Receptor-Induced Cell Death by TRADD and RIP1. Molecular and Cellular Biology, 2006, 26, 3505-3513.	2.3	130
50	Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood, 2001, 98, 2466-2473.	1.4	129
51	Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. Journal of Clinical Investigation, 2009, 119, 2976-89.	8.2	126
52	Development of immune checkpoint therapy for cancer. Journal of Experimental Medicine, 2019, 216, 1244-1254.	8.5	125
53	Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nature Medicine, 2005, 11, 1066-1072.	30.7	124
54	Inhibition of Fas-mediated apoptosis by the B cell antigen receptor through c-FLIP. European Journal of Immunology, 2000, 30, 155-163.	2.9	123

#	Article	IF	CITATIONS
55	Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nature Communications, 2014, 5, 4930.	12.8	118
56	The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3369-3374.	7.1	112
57	Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis. PLoS ONE, 2016, 11, e0147792.	2.5	102
58	JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood, 2015, 125, 2753-2758.	1.4	94
59	The power and the promise of restimulationâ€induced cell death in human immune diseases. Immunological Reviews, 2010, 236, 68-82.	6.0	86
60	TcR-α/β+ CD4â^'CD8â^' T Cells in Humans with the Autoimmune Lymphoproliferative Syndrome Express a Novel CD45 Isoform That Is Analogous to Murine B220 and Represents a Marker of Altered O-Glycan Biosynthesis. Clinical Immunology, 2001, 100, 314-324.	3.2	85
61	NF-κB regulates Fas / APO-1 / CD95- and TCR-mediated apoptosis of T lymphocytes. European Jo Immunology, 1999, 29, 878-886.	ournal of	84
62	Cytopathic Killing of Peripheral Blood CD4 + T Lymphocytes by Human Immunodeficiency Virus Type 1 Appears Necrotic rather than Apoptotic and Does Not Require env. Journal of Virology, 2002, 76, 5082-5093.	3.4	83
63	The control of CD4+CD25+Foxp3+ regulatory T cell survival. Biology Direct, 2008, 3, 6.	4.6	74
64	Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. Journal of Clinical Investigation, 2019, 130, 507-522.	8.2	74
65	Introduction: The molecular regulation of lymphocyte apoptosis. Seminars in Immunology, 1997, 9, 1-5.	5.6	72
66	Autocrine Feedback Death and the Regulation of Mature T Lymphocyte Antigen Responses. International Reviews of Immunology, 1995, 13, 115-134.	3.3	71
67	Dominant inhibition of Fas ligand-mediated apoptosis due to a heterozygous mutation associated with autoimmune lymphoproliferative syndrome (ALPS) Type Ib. BMC Medical Genetics, 2007, 8, 41.	2.1	69
68	Mucus sialylation determines intestinal host-commensal homeostasis. Cell, 2022, 185, 1172-1188.e28.	28.9	66
69	HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science, 2020, 369, 202-207.	12.6	65
70	Selective Induction of Apoptosis in Mature T Lymphocytes by Variant T Cell Receptor Ligands. Journal of Experimental Medicine, 1998, 187, 349-355.	8.5	64
71	Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood, 2020, 136, 2638-2655.	1.4	64
72	Death of CD4+ T-Cell Lines Caused by Human Immunodeficiency Virus Type 1 Does Not Depend on Caspases or Apoptosis. Journal of Virology, 2002, 76, 5094-5107.	3.4	63

#	Article	IF	CITATIONS
73	Human interleukin-2 receptor \hat{l}^2 mutations associated with defects in immunity and peripheral tolerance. Journal of Experimental Medicine, 2019, 216, 1311-1327.	8.5	62
74	TNF-α-Induced Secretion of C-C Chemokines Modulates C-C Chemokine Receptor 5 Expression on Peripheral Blood Lymphocytes. Journal of Immunology, 2000, 164, 6180-6187.	0.8	58
75	Magnesium transporter 1 (MAGT1) deficiency causes selective defects in N-linked glycosylation and expression of immune-response genes. Journal of Biological Chemistry, 2019, 294, 13638-13656.	3.4	57
76	Divalent cation signaling in immune cells. Trends in Immunology, 2014, 35, 332-344.	6.8	56
77	Dual Proteolytic Pathways Govern Glycolysis and Immune Competence. Cell, 2014, 159, 1578-1590.	28.9	54
78	An Update on XMEN Disease. Journal of Clinical Immunology, 2020, 40, 671-681.	3.8	53
79	Loss of MACT1 abrogates the Mg2+ flux required for T cell signaling and leads to a novel human primary immunodeficiency. Magnesium Research, 2011, 24, 109-114.	0.5	52
80	X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection, and neoplasia disease. Current Opinion in Pediatrics, 2014, 26, 713-719.	2.0	52
81	Vpr Cytopathicity Independent of G 2 /M Cell Cycle Arrest in Human Immunodeficiency Virus Type 1-Infected CD4 + T Cells. Journal of Virology, 2007, 81, 8878-8890.	3.4	51
82	Essential Lymphocyte Function Associated 1 (LFA-1): Intercellular Adhesion Molecule Interactions for T Cell–mediated B Cell Apoptosis by Fas/APO-1/CD95. Journal of Experimental Medicine, 1997, 186, 1171-1176.	8.5	47
83	Genomics of Immune Diseases and New Therapies. Annual Review of Immunology, 2016, 34, 121-149.	21.8	47
84	The Molecular Mechanisms of Regulatory T Cell Immunosuppression. Frontiers in Immunology, 2011, 2, 60.	4.8	42
85	Antigen-Induced Programmed T Cell Death as a New Approach to Immune Therapy. Clinical Immunology and Immunopathology, 1995, 75, 13-19.	2.0	41
86	Critical role for BIM in T cell receptor restimulation-induced death. Biology Direct, 2008, 3, 34.	4.6	41
87	Molecular Regulation of T Lymphocyte Homeostasis in the Healthy and Diseased Immune System. Immunologic Research, 2003, 27, 387-398.	2.9	40
88	Large Deletion of MAGT1 Gene in a Patient with Classic Kaposi Sarcoma, CD4 Lymphopenia, and EBV Infection. Journal of Clinical Immunology, 2017, 37, 32-35.	3.8	38
89	Mg2+ regulation of kinase signaling and immune function. Journal of Experimental Medicine, 2019, 216, 1828-1842.	8.5	37
90	Protein Kinase A Phosphorylation Activates Vpr-Induced Cell Cycle Arrest during Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2010, 84, 6410-6424.	3.4	35

#	Article	IF	CITATIONS
91	Parameters controlling the programmed death of mature mouse T lymphocytes in high-dose suppression. Cellular Immunology, 1995, 160, 71-78.	3.0	33
92	Genetic Defects of Apoptosis and Primary Immunodeficiency. Immunology and Allergy Clinics of North America, 2008, 28, 329-351.	1.9	32
93	RELA haploinsufficiency in CD4 lymphoproliferative disease with autoimmune cytopenias. Journal of Allergy and Clinical Immunology, 2018, 141, 1507-1510.e8.	2.9	31
94	Genomics is rapidly advancing precision medicine for immunological disorders. Nature Immunology, 2015, 16, 1001-1004.	14.5	29
95	STAT5B: A Differential Regulator of the Life and Death of CD4+ Effector Memory T Cells. Journal of Immunology, 2018, 200, 110-118.	0.8	29
96	Restimulationâ€induced cell death: new medical and research perspectives. Immunological Reviews, 2017, 277, 44-60.	6.0	23
97	Broadly effective metabolic and immune recovery with C5 inhibition in CHAPLE disease. Nature Immunology, 2021, 22, 128-139.	14.5	23
98	Effective Antigen-Specific Immunotherapy in the Marmoset Model of Multiple Sclerosis. Journal of Immunology, 2001, 166, 2116-2121.	0.8	22
99	14-3-3 theta binding to cell cycle regulatory factors is enhanced by HIV-1 Vpr. Biology Direct, 2008, 3, 17.	4.6	22
100	Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status. Journal of Translational Medicine, 2011, 9, 203.	4.4	22
101	Clinical, Immunological, and Molecular Findings in Four Cases of B Cell Expansion With NF-κB and T Cell Anergy Disease for the First Time From India. Frontiers in Immunology, 2018, 9, 1049.	4.8	22
102	GIMAP5 maintains liver endothelial cell homeostasis and prevents portal hypertension. Journal of Experimental Medicine, 2021, 218, .	8.5	22
103	F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2317-2321.e12.	2.9	21
104	CRISPR-targeted <i>MAGT1</i> insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood, 2021, 138, 2768-2780.	1.4	20
105	Amelioration of Autoimmune Reactions by Antigen-Induced Apoptosis of T Cells. Advances in Experimental Medicine and Biology, 1995, 383, 157-166.	1.6	20
106	Analysis of Human Immunodeficiency Virus Cytopathicity by Using a New Method for Quantitating Viral Dynamics in Cell Culture. Journal of Virology, 2005, 79, 4025-4032.	3.4	18
107	Plasma magnesium is inversely associated with Epstein-Barr virus load in peripheral blood and Burkitt lymphoma in Uganda. Cancer Epidemiology, 2018, 52, 70-74.	1.9	17
108	Homozygous <i>IL37</i> mutation associated with infantile inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17

#	Article	IF	CITATIONS
109	A Rapid Ex Vivo Clinical Diagnostic Assay for Fas Receptor-Induced T Lymphocyte Apoptosis. Journal of Clinical Immunology, 2013, 33, 479-488.	3.8	14
110	A Double-Blind, Placebo-Controlled, Crossover Study of Magnesium Supplementation in Patients with XMEN Disease. Journal of Clinical Immunology, 2022, 42, 108-118.	3.8	14
111	Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene. Journal of Thrombosis and Haemostasis, 2016, 14, 346-355.	3.8	12
112	CD55 Deficiency and Protein-Losing Enteropathy. New England Journal of Medicine, 2017, 377, 1499-1500.	27.0	12
113	Exposed Hydrophobic Residues in Human Immunodeficiency Virus Type 1 Vpr Helix-1 Are Important for Cell Cycle Arrest and Cell Death. PLoS ONE, 2011, 6, e24924.	2.5	10
114	Identifying genetic determinants of autoimmunity and immune dysregulation. Current Opinion in Immunology, 2015, 37, 28-33.	5.5	10
115	Two patients with chronic mucocutaneous candidiasis caused by TRAF3IP2 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 256-261.e2.	2.9	10
116	Molecular Classification of Primary Immunodeficiencies of T Lymphocytes. Advances in Immunology, 2018, 138, 99-193.	2.2	9
117	Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice. Diabetologia, 2017, 60, 1475-1482.	6.3	8
118	<scp>NFâ€₽B</scp> Rel subunit exchange on a physiological timescale. Protein Science, 2021, 30, 1818-1832.	7.6	8
119	Novel diagnostic and therapeutic approaches for autoimmune diabetes — A prime time to treat insulitis as a disease. Clinical Immunology, 2015, 156, 109-118.	3.2	7
120	MAGT1 messenger RNA-corrected autologous T and natural killer cells for potential cell therapy in X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia disease. Cytotherapy, 2021, 23, 203-210.	0.7	7
121	Apoptosis Signaling Pathways. Current Protocols in Immunology, 2001, 44, Unit 11.9C.	3.6	5
122	Apoptosis Signaling Pathways. Current Protocols in Cytometry, 2002, 21, Unit 7.18.	3.7	5
123	Clinical utility gene card for: X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection, and neoplasia (XMEN). European Journal of Human Genetics, 2015, 23, 889-889.	2.8	5
124	Mature T Lymphocyte Apoptosis in the Healthy and Diseased Immune System. Advances in Experimental Medicine and Biology, 1996, 406, 229-239.	1.6	5
125	T cell receptor transgenic mice recognizing the immunodominant epitope of the Torpedo californica acetylcholine receptor. European Journal of Immunology, 2002, 32, 2055.	2.9	4
126	Ectopic T cell receptor expression causes B cell immunodeficiency in transgenic mice. European Journal of Immunology, 2004, 34, 890-898.	2.9	4

#	Article	IF	CITATIONS
127	T Helper 2 Cells' Preferred Way to Die. Immunity, 2006, 25, 187-188.	14.3	4
128	Exome sequencing study in a clinical research setting finds general acceptance of study returning secondary genomic findings with little decisional conflict. Journal of Genetic Counseling, 2021, 30, 766-773.	1.6	4
129	GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. Journal of Experimental Medicine, 2022, 219, .	8.5	4
130	Combined Immune Deficiencies. , 2014, , 143-169.		3
131	Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nature Immunology, 2022, 23, 75-85.	14.5	3
132	Lessons from autoimmune lymphoproliferative syndrome. Drug Discovery Today Disease Mechanisms, 2005, 2, 495-502.	0.8	2
133	Combined immune deficiencies (CIDs). , 2020, , 207-268.		2
134	Inhibition of Fas-mediated apoptosis by the B cell antigen receptor through c-FLIP. European Journal of Immunology, 2000, 30, 155-163.	2.9	2
135	Human genetic approaches to diseases of lymphocyte activation. Immunologic Research, 2009, 43, 8-14.	2.9	1
136	Introduction: Continuing insights into the healthy and diseased immune system through human genetic investigation. Immunological Reviews, 2019, 287, 5-8.	6.0	1
137	Nonapoptotic HIV-Induced T Cell Death. , 2005, , 279-291.		1
138	Programmed cell death in lymphocytes. , 2008, , 225-234.		0
139	Monogenic Autoimmune Lymphoproliferative Syndromes. , 2014, , 695-709.		Ο
140	Bill Paul: The heart of immunology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14117-14118.	7.1	0
141	Clinical Genomics — Molecular Pathogenesis Revealed. New England Journal of Medicine, 2016, 375, 2117-2119.	27.0	Ο
142	Programmed cell death in lymphocytes and associated disorders. , 2013, , 172-180.		0
143	Molecular Basis of Cell Death Programs in Mature T Cell Homeostasis. , 2014, , 41-59.		0
144	Gene Editing and mRNA-Based Therapy: Two Complementary Therapeutic Approaches for the Treatment of Patients with Xmen Disease. Blood, 2019, 134, 4637-4637.	1.4	0