Rodrigo U Gallardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7939612/publications.pdf Version: 2024-02-01

RODRICO II CALLARDO

#	Article	IF	CITATIONS
1	Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chemical Reviews, 2021, 121, 1845-1893.	23.0	129
2	Synthetic Pept-Ins as a Generic Amyloid-Like Aggregation-Based Platform for In Vivo PET Imaging of Intracellular Targets. Bioconjugate Chemistry, 2021, 32, 2052-2064.	1.8	4
3	Targeting S100B with Peptides Encoding Intrinsic Aggregation-Prone Sequence Segments. Molecules, 2021, 26, 440.	1.7	6
4	The cellular modifier MOAGâ€4/SERF drives amyloid formation through charge complementation. EMBO Journal, 2021, 40, e107568.	3.5	15
5	Amyloid structures: much more than just a cross-β fold. Current Opinion in Structural Biology, 2020, 60, 7-16.	2.6	150
6	Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nature Structural and Molecular Biology, 2020, 27, 1048-1056.	3.6	71
7	Thermodynamic and Evolutionary Coupling between the Native and Amyloid State of Globular Proteins. Cell Reports, 2020, 31, 107512.	2.9	34
8	Reverse engineering synthetic antiviral amyloids. Nature Communications, 2020, 11, 2832.	5.8	25
9	Processing Induced Changes in Food Proteins: Amyloid Formation during Boiling of Hen Egg White. Biomacromolecules, 2020, 21, 2218-2228.	2.6	34
10	Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments. Cell Reports, 2020, 30, 2834-2845.e3.	2.9	12
11	The structural basis for an on–off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29090-29100.	3.3	17
12	Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO Journal, 2020, 39, e102864.	3.5	33
13	Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein. Biochemical Journal, 2019, 476, 51-66.	1.7	21
14	Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis. Nature Communications, 2018, 9, 866.	5.8	53
15	Hsp90 Mediates Membrane Deformation and Exosome Release. Molecular Cell, 2018, 71, 689-702.e9.	4.5	103
16	Prediction and Reduction of the Aggregation of Monoclonal Antibodies. Journal of Molecular Biology, 2017, 429, 1244-1261.	2.0	112
17	A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nature Communications, 2017, 8, 1008.	5.8	53
18	Alzheimer's-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell, 2017, 170, 443-456.e14.	13.5	199

Rodrigo U Gallardo

#	Article	IF	CITATIONS
19	Protein aggregation as an antibiotic design strategy. Molecular Microbiology, 2016, 99, 849-865.	1.2	44
20	Structural hot spots for the solubility of globular proteins. Nature Communications, 2016, 7, 10816.	5.8	57
21	De novo design of a biologically active amyloid. Science, 2016, 354, .	6.0	63
22	Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling. Nature Communications, 2016, 7, 12101.	5.8	35
23	Sequence-specific protein aggregation generates defined protein knockdowns in plants. Plant Physiology, 2016, 171, pp.00335.2016.	2.3	24
24	Solubis: a webserver to reduce protein aggregation through mutation. Protein Engineering, Design and Selection, 2016, 29, 285-289.	1.0	51
25	Structure of the Extracellular Domain of Matrix Protein 2 of Influenza A Virus in Complex with a Protective Monoclonal Antibody. Journal of Virology, 2015, 89, 3700-3711.	1.5	57
26	Sequence-dependent Internalization of Aggregating Peptides. Journal of Biological Chemistry, 2015, 290, 242-258.	1.6	22
27	WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics, 2015, 31, 1698-1700.	1.8	61
28	The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation. Journal of Biological Chemistry, 2014, 289, 30977-30989.	1.6	132
29	α-Galactosidase Aggregation Is a Determinant of Pharmacological Chaperone Efficacy on Fabry Disease Mutants. Journal of Biological Chemistry, 2012, 287, 28386-28397.	1.6	31
30	Peptides based on the presenilinâ€APP binding domain inhibit APP processing and Aβ production through interfering with the APP transmembrane domain. FASEB Journal, 2012, 26, 3765-3778.	0.2	11
31	Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 2011, 7, 285-295.	3.9	450
32	Structural Diversity of PDZ–Lipid Interactions. ChemBioChem, 2010, 11, 456-467.	1.3	41
33	Increased Monomerization of Mutant HSPB1 Leads to Protein Hyperactivity in Charcot-Marie-Tooth Neuropathy. Journal of Biological Chemistry, 2010, 285, 12778-12786.	1.6	95
34	Accurate Prediction of DnaK-Peptide Binding via Homology Modelling and Experimental Data. PLoS Computational Biology, 2009, 5, e1000475.	1.5	118