Sébastien Y P Allain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science, 2011, 15, 141-168.	5.6	1,134
2	Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 500, 196-206.	2.6	404
3	Micromechanical behavior and thermal stability of a dual-phase α+α' titanium alloy produced by additive manufacturing. Acta Materialia, 2019, 162, 149-162.	3.8	133
4	Effect of chemical composition on work hardening of Fe—Mn—C TWIP steels. Materials Science and Technology, 2011, 27, 707-709.	0.8	132
5	On the mechanism of unstable plastic flow in an austenitic FeMnC TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 519, 147-154.	2.6	86
6	Microstructure based modeling for the mechanical behavior of ferrite–pearlite steels suitable to capture isotropic and kinematic hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 329-336.	2.6	82
7	On measurement of retained austenite in multiphase TRIP steels — results of blind round robin test involving six different techniques. Materials Science and Technology, 2009, 25, 567-574.	0.8	75
8	The influence of plastic instabilities on the mechanical properties of a high-manganese austenitic FeMnC steel. International Journal of Materials Research, 2008, 99, 734-738.	0.1	71
9	Microstructure – Properties Relationships in Carbide-free Bainitic Steels. ISIJ International, 2011, 51, 1724-1732.	0.6	68
10	Toward a New Interpretation of the Mechanical Behaviour of As-quenched Low Alloyed Martensitic Steels. ISIJ International, 2012, 52, 717-722.	0.6	58
11	Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 710, 245-250.	2.6	58
12	Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Materialia, 2017, 133, 333-345.	3.8	56
13	In-situ investigation of quenching and partitioning by High Energy X-Ray Diffraction experiments. Scripta Materialia, 2017, 131, 15-18.	2.6	52
14	Modelling the effect of carbon on deformation behaviour of twinning induced plasticity steels. Journal of Materials Science, 2011, 46, 7410-7414.	1.7	48
15	Compression of crumpled aluminum thin foils and comparison with other cellular materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 570, 1-7.	2.6	46
16	Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy X-Ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140249.	2.6	46
17	Characterization and Modeling of Manganese Effect on Strength and Strain Hardening of Martensitic Carbon Steels. ISIJ International, 2013, 53, 1076-1080.	0.6	44
18	Structure-properties relationship of ultra-fine grained V-microalloyed dual phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 293-303.	2.6	42

Sébastien Y P Allain

#	Article	IF	CITATIONS
19	Relationship between Microstructure, Mechanical Properties and Damage Mechanisms in High Martensite Fraction Dual Phase Steels. ISIJ International, 2015, 55, 2237-2246.	0.6	41
20	Towards the microstructure design of DP steels: A generic size-sensitive mean-field mechanical model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 637, 222-234.	2.6	38
21	EBSD study of the substructure development with cold deformation of dual phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 947-953.	2.6	36
22	New insights into martensite strength and the damage behaviour of dual phase steels. Acta Materialia, 2018, 159, 112-122.	3.8	36
23	Effects of Q&P Processing Conditions on Austenite Carbon Enrichment Studied by In Situ High-Energy X-ray Diffraction Experiments. Metals, 2017, 7, 232.	1.0	32
24	In Situ Investigation of the Iron Carbide Precipitation Process in a Fe-C-Mn-Si Q&P Steel. Materials, 2018, 11, 1087.	1.3	31
25	Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics. Acta Materialia, 2021, 212, 116920.	3.8	24
26	Static and dynamical ageing processes at room temperature in a Fe25Ni0.4C virgin martensite: effect of C redistribution at the nanoscale. Philosophical Magazine Letters, 2013, 93, 68-76.	0.5	23
27	Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe-C-Mn-Si alloy. Scripta Materialia, 2019, 162, 181-184.	2.6	23
28	The Bauschinger effect in drawn and annealed nanocomposite Cu–Nb wires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 10-19.	2.6	20
29	Effect of Grain Refinement on the Mechanical Behaviour of Ferritic Steels: Evolution of Isotropic Hardening and Kinematic Hardening. Materials Science Forum, 0, 584-586, 605-609.	0.3	17
30	Quantitative Assessment of the Time to End Bainitic Transformation. Metals, 2019, 9, 925.	1.0	14
31	Microstructure Evolution and Competitive Reactions during Quenching and Partitioning of a Model Fe–C–Mn–Si Alloy. Metals, 2020, 10, 137.	1.0	14
32	The Influence of Vanadium Additions on Isothermally Formed Bainite Microstructures in Medium Carbon Steels Containing Retained Austenite. Metals, 2020, 10, 392.	1.0	13
33	Carbide-Free Bainite Transformations Above and Below Martensite Start Temperature Investigated by In-Situ High-Energy X-Ray Diffraction. Jom, 2021, 73, 3181-3194.	0.9	12
34	Exploring Carbide-Free Bainitic Structures for Hot Dip Galvanizing Products. ISIJ International, 2013, 53, 1253-1259.	0.6	11
35	In Situ Determination of Phase Stress States in an Unstable Medium Manganese Duplex Steel Studied by High-Energy X-ray Diffraction. Metals, 2020, 10, 1335.	1.0	11
36	Kinetics of bainite transformation in heterogeneous microstructures. Materials Letters, 2012, 67, 187-189.	1.3	9

Sébastien Y P Allain

#	Article	IF	CITATIONS
37	Microstructure-based behavior law for globular pearlitic steels. Journal of Materials Research and Technology, 2019, 8, 3373-3376.	2.6	9
38	Carbon heterogeneities in austenite during Quenching & Partitioning (Q&P) process revealed by in situ High Energy X-Ray Diffraction (HEXRD) experiments. Scripta Materialia, 2020, 181, 108-114.	2.6	9
39	Real-Time Investigation of Recovery, Recrystallization and Austenite Transformation during Annealing of a Cold-Rolled Steel Using High Energy X-ray Diffraction (HEXRD). Metals, 2019, 9, 8.	1.0	8
40	Evolution of cementite composition along the processing of cold-rolled and annealed Dual-Phase steels. Materialia, 2019, 6, 100179.	1.3	8
41	Hot Forming of Ultra-Fine-Grained Multiphase Steel Products Using Press Hardening Combined with Quenching and Partitioning Process. Metals, 2019, 9, 357.	1.0	7
42	Fast Granularization of Lath-Like Bainite in FeNiC Alloys During Isothermal Holding at Ms+ 20ÂK (+20°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 15-18.	1.1	6
43	An improved physically based behaviour law for ferritic steels and its application to crash modelling. International Journal of Material Forming, 2009, 2, 527-530.	0.9	5
44	A Physics-Based Mean-Field Model for Ferrite Recovery and Recrystallization. Metals, 2020, 10, 622.	1.0	5
45	Martensite and nanobainite transformations in a low alloyed steel studied by in situ high energy synchrotron diffraction. Materials Characterization, 2022, 185, 111740.	1.9	5
46	Key Parameters to Promote Granularization of Lath-Like Bainite/Martensite in FeNiC Alloys during Isothermal Holding. Materials, 2018, 11, 1808.	1.3	3
47	Recovery of severely deformed ferrite studied by in situ high energy X-ray diffraction. Materials Characterization, 2021, 179, 111378.	1.9	3
48	Dual-Phase Steels: The First Family of Advanced High Strength Steels. , 2022, , 37-62.		3
49	Numerical Investigations of the Effects of Substitutional Elements on the Interface Conditions During Partitioning in Quenching and Partitioning Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2568-2572.	1.1	2