

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793882/publications.pdf Version: 2024-02-01

ΔΛΝΙΙ

#	Article	IF	CITATIONS
1	Palladium-Catalyzed Regioselective [5 + 1] Annulation of Vinyl Aziridines/Epoxides with CICF ₂ COONa. Organic Letters, 2022, 24, 4630-4634.	2.4	11
2	Visible-Light-Induced 1,6-Enynes Triggered C–Br Bond Homolysis of Bromomalonates: Solvent-Controlled Divergent Synthesis of Carbonylated and Hydroxylated Benzofurans. Journal of Organic Chemistry, 2022, 87, 9250-9258.	1.7	14
3	Goldâ€Catalyzed Oneâ€Pot Synthesis of Polyfluoroalkylated Oxazoles from Nâ€Propargylamides Under Visibleâ€Light Irradiation. Chemistry - an Asian Journal, 2021, 16, 2417-2420.	1.7	17
4	Domino Ringâ€Opening of <i>N</i> â€Tosyl Vinylaziridines Triggered by Aryne Dielsâ€Alder Reaction. Advanced Synthesis and Catalysis, 2021, 363, 4734-4739.	2.1	9
5	Merging Gold/Copper Catalysis and Copper/Photoredox Catalysis: An Approach to Alkyl Oxazoles from <i>N</i> -Propargylamides. Journal of Organic Chemistry, 2021, 86, 18247-18256.	1.7	16
6	Reactivity of Vinyl Epoxides/Oxetanes/Cyclopropanes toward Arynes: Access to Functionalized Phenanthrenes. ACS Omega, 2021, 6, 35852-35865.	1.6	7
7	Visible-Light Photoredox-Catalyzed Formal [5 + 1] Cycloaddition of <i>N</i> -Tosyl Vinylaziridines with Difluoroalkyl Halides. Organic Letters, 2020, 22, 9658-9664.	2.4	32
8	A Pentaâ€Eu ^{III} Sandwiched Dawson Selenotungstate and Its Unique Luminescence Properties. European Journal of Inorganic Chemistry, 2020, 2020, 3416-3425.	1.0	6
9	Nickel-Catalyzed Transformation of Diazoacetates to Alkyl Radicals Using Alcohol as a Hydrogen Source. Organic Letters, 2019, 21, 9386-9390.	2.4	31
10	Two Penta-RE ^{III} Encapsulated Tetravacant Dawson Selenotungstates and Nanoscale Derivatives and Their Luminescence Properties. Inorganic Chemistry, 2019, 58, 7078-7090.	1.9	25
11	Carbon doping of hexagonal boron nitride porous materials toward CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 1832-1839.	5.2	131
12	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie, 2018, 130, 8124-8128.	1.6	67
13	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 7992-7996.	7.2	193
14	lodine-catalyzed diazo activation to access radical reactivity. Nature Communications, 2018, 9, 1972.	5.8	75
15	Threeâ€Component Povarov Reaction with Alcohols as Alkene Precursors: Efficient Access to 2â€Arylquinolines. European Journal of Organic Chemistry, 2017, 2017, 618-625.	1.2	17
16	Alkali-Induced Ring-Opening of 2-Amidodihydrofuran and Manganese-Catalyzed Aerobic Dehydrogenation Annulation: AccessÂto Functionalized Oxazole. Journal of Organic Chemistry, 2017, 82, 4569-4577.	1.7	14
17	Straightforward synthesis of functionalized chroman-4-ones through cascade radical cyclization-coupling of 2-(allyloxy)arylaldehydes. Chemical Communications, 2016, 52, 3661-3664.	2.2	72
18	Facile Synthesis of Trisubstituted Carbazoles by Acidâ€Catalyzed Ringâ€Opening Annulation of 2â€Amidodihydrofurans with Indoles. Chemistry - A European Journal, 2015, 21, 16383-16386.	1.7	32

Pan Li

#	Article	IF	CITATIONS
19	The development of carbene-stabilized N–O radical coupling strategy in metal-free regioselective C–H azidation of quinoline N-oxides. Organic Chemistry Frontiers, 2015, 2, 1313-1317.	2.3	45
20	Metal-free regioselective C-3 nitration of quinoline N-oxides with tert-butyl nitrite. RSC Advances, 2015, 5, 32835-32838.	1.7	42
21	Direct N-acylation of azoles via a metal-free catalyzed oxidative cross-coupling strategy. Chemical Communications, 2014, 50, 4751.	2.2	67
22	Copper-catalyzed methyl esterification of aromatic aldehydes and benzoic alcohols by TBHP as both oxidant and methyl source. Tetrahedron Letters, 2014, 55, 390-393.	0.7	31
23	Direct Oxidative Coupling of Enamides and 1,3-Dicarbonyl Compounds: A Facile and Versatile Approach to Dihydrofurans, Furans, Pyrroles, and Dicarbonyl Enamides. Organic Letters, 2014, 16, 5992-5995.	2.4	63
24	Acid-catalyzed acylation reaction via C–C bond cleavage: a facile and mechanistically defined approach to synthesize 3-acylindoles. Chemical Communications, 2014, 50, 12181-12184.	2.2	37
25	One-pot synthesis of dihydrobenzisoxazoles from hydroxylamines, acetylenedicarboxylates, and arynes via in situ generation of nitrones. Canadian Journal of Chemistry, 2013, 91, 43-50.	0.6	13
26	Cycloaddition of N-Sulfonylpyridinium Imides and Isoquinolinium Imides with Acetylenedicarboxylates: A Practical Synthesis of Pyrazolo[1,5-a]pyridine and Pyrazolo[5,1-a]isoquinoline Derivatives. Synthesis, 2012, 44, 3033-3042.	1.2	14
27	Synthesis of Substituted 1 <i>H</i> -Indazoles from Arynes and Hydrazones. Journal of Organic Chemistry, 2012, 77, 3149-3158.	1.7	81
28	Aryne [3 + 2] cycloaddition with N-sulfonylpyridinium imides and in situ generated N-sulfonylisoquinolinium imides: a potential route to pyrido[1,2-b]indazoles and indazolo[3,2-a]isoquinolines. Organic and Biomolecular Chemistry, 2012, 10, 1922.	1.5	56
29	Synthesis of Pyrido[1,2- <i>b</i>]indazoles via Aryne [3 + 2] Cycloaddition with <i>N</i> -Tosylpyridinium Imides. Journal of Organic Chemistry, 2011, 76, 6837-6843.	1.7	68
30	Synthesis of 3-Substituted Indazoles from Arynes and <i>N</i> -Tosylhydrazones. Organic Letters, 2011, 13, 3340-3343.	2.4	102
31	Pd-catalyzed oxidative coupling of monosubstituted sydnones and terminal alkynes. Tetrahedron Letters, 2011, 52, 3797-3801.	0.7	18