Yuya Kado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793870/publications.pdf Version: 2024-02-01

ΥΠΑΥ ΚΥΡΟ

#	Article	IF	CITATIONS
1	Electrochemical and physical properties of pulverized graphite for use in electric double layer capacitors. , 2022, 1, 50-58.		0
2	Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous and Mesoporous Materials, 2021, 310, 110646.	4.4	10
3	Fe-induced layer exchange of multilayer graphene for rechargeable battery anodes. Applied Physics Express, 2020, 13, 025501.	2.4	6
4	Multilayer Graphene Battery Anodes on Plastic Sheets for Flexible Electronics. ACS Applied Energy Materials, 2020, 3, 8410-8414.	5.1	10
5	Mechanochemical Processing of Natural Graphite under Different Atmospheres for Fabricating Electrodes Used in Electric Double-layer Capacitors. Electrochemistry, 2020, 88, 94-98.	1.4	3
6	Pulverized Graphite by Ball Milling for Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2019, 166, A2471-A2476.	2.9	5
7	Preparation of porous carbons by templating method using Mg hydroxide for supercapacitors. Microporous and Mesoporous Materials, 2019, 287, 101-106.	4.4	13
8	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	2.5	43
9	Void-bearing electrodes with microporous activated carbon for electric double-layer capacitors. Journal of Electroanalytical Chemistry, 2019, 833, 33-38.	3.8	9
10	Durability of mesoporous carbon electrodes in electric double layer capacitors with organic electrolytes. Tanso, 2017, 2017, 182-187.	0.1	8
11	Electrorefining of titanium from Bi–Ti alloys in molten chlorides for a new smelting process of titanium. Journal of Applied Electrochemistry, 2016, 46, 987-993.	2.9	10
12	MgO-templated carbon as a negative electrode material for Na-ion capacitors. Journal of Physics and Chemistry of Solids, 2016, 99, 167-172.	4.0	17
13	Enhanced Durability of Porous Carbon/Single-Walled Carbon Nanotube Composite Electrodes for Supercapacitors. Journal of the Electrochemical Society, 2016, 163, A1753-A1758.	2.9	5
14	Correlation between the pore structure and electrode density of MgO-templated carbons for electric double layer capacitor applications. Journal of Power Sources, 2016, 305, 128-133.	7.8	23
15	Electrochemical behavior of MgO-templated mesoporous carbons in the propylene carbonate solution of sodium hexafluorophosphate. Journal of Applied Electrochemistry, 2015, 45, 273-280.	2.9	6
16	Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes. Journal of Power Sources, 2015, 276, 176-180.	7.8	23
17	New Smelting Process for Titanium: Magnesiothermic Reduction of TiCl4 into Liquid Bi and Subsequent Refining by Vacuum Distillation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 57-61.	2.1	16
18	Excellent Rate Capability of MgO-Templated Mesoporous Carbon as an Na-Ion Energy Storage Material. ECS Electrochemistry Letters, 2014, 4, A22-A23.	1.9	13

Yuya Kado

#	Article	IF	CITATIONS
19	Highly enhanced capacitance of MgO-templated mesoporous carbons in low temperature ionic liquids. Journal of Power Sources, 2014, 271, 377-381.	7.8	35
20	Anodic Nanotubular/porous Hematite Photoanode for Solar Water Splitting: Substantial Effect of Iron Substrate Purity. ChemSusChem, 2014, 7, 934-940.	6.8	64
21	Boron-Doped Diamond Electrodes in Molten Chloride Systems. , 2013, , 187-205.		2
22	Thermodynamic and Kinetic Properties of Oxide Ions in a LiCl–KCl–CsCl Eutectic Melt. Journal of the Electrochemical Society, 2013, 160, E90-E93.	2.9	5
23	Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochemistry Communications, 2013, 34, 308-311.	4.7	46
24	Phase Diagram Investigations of the Bi-Ti System. Journal of Phase Equilibria and Diffusion, 2013, 34, 289-296.	1.4	11
25	Electrolysis of TiO ₂ or TiCl ₂ Using Bi Liquid Cathode in Molten CaCl ₂ . Journal of the Electrochemical Society, 2013, 160, E139-E142.	2.9	9
26	Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). Chemical Communications, 2012, 48, 8685.	4.1	67
27	Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochemistry Communications, 2012, 17, 56-59.	4.7	39
28	Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochemistry Communications, 2012, 17, 67-70.	4.7	38
29	Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere. Journal of Electroanalytical Chemistry, 2011, 662, 25-29.	3.8	16
30	Thermodynamics of the O2/O2â^' redox couple in molten (LiCl+KCl+Li2O) systems. Journal of Chemical Thermodynamics, 2010, 42, 1230-1233.	2.0	4
31	Behavior of a Boron-Doped Diamond Electrode in Molten Chlorides Containing Oxide Ion. Green Energy and Technology, 2010, , 234-239.	0.6	0
32	Oxygen Electrode Reaction in a LiCl–KCl Eutectic Melt. Journal of the Electrochemical Society, 2009, 156, E167.	2.9	9
33	Stability of a boron-doped diamond electrode in molten chloride systems. Diamond and Related Materials, 2009, 18, 1186-1190.	3.9	9
34	Dissolution Behavior of Lithium Oxide in Molten LiClâ^'KCl Systems. Journal of Chemical & Engineering Data, 2008, 53, 2816-2819.	1.9	35
35	Electrochemical Behavior of Oxide Ion in a LiCl–NaCl–CaCl[sub 2] Eutectic Melt. Journal of the Electrochemical Society, 2008, 155, E85.	2.9	9