Tian Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7938679/publications.pdf

Version: 2024-02-01

430874 395702 1,525 33 18 33 citations h-index g-index papers 49 49 49 2650 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Advances in hexagon mesh-based flow direction modeling. Advances in Water Resources, 2022, 160, 104099.	3.8	9
2	Forest Canopy Density Effects on Snowpack Across the Climate Gradients of the Western United States Mountain Ranges. Water Resources Research, 2022, 58, .	4.2	16
3	A new large-scale suspended sediment model and its application over the United States. Hydrology and Earth System Sciences, 2022, 26, 665-688.	4.9	14
4	Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6. Geoscientific Model Development, 2022, 15, 3941-3967.	3.6	1
5	Validation of the Community Land Model Version 5 Over the Contiguous United States (CONUS) Using In Situ and Remote Sensing Data Sets. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033539.	3.3	19
6	Impact of climate change on water availability and its propagation through the Western U.S. power grid. Applied Energy, 2020, 276, 115467.	10.1	38
7	The DOE E3SM v1.1 Biogeochemistry Configuration: Description and Simulated Ecosystemâ€Climate Responses to Historical Changes in Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001766.	3.8	65
8	Global Irrigation Characteristics and Effects Simulated by Fully Coupled Land Surface, River, and Water Management Models in E3SM. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002069.	3.8	16
9	The Straightening of a River Meander Leads to Extensive Losses in Flow Complexity and Ecosystem Services. Water (Switzerland), 2020, 12, 1680.	2.7	15
10	The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.	3.8	112
11	Flood Inundation Generation Mechanisms and Their Changes in 1953–2004 in Global Major River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11672-11692.	3.3	18
12	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	3.8	404
13	Roles of Irrigation and Reservoir Operations in Modulating Terrestrial Water and Energy Budgets in the Indian Subcontinental River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12915-12936.	3.3	19
14	Strong Influence of Irrigation on Water Budget and Land Surface Temperature in Indian Subcontinental River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1449-1462.	3.3	56
15	Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations. Bulletin of the American Meteorological Society, 2018, 99, 299-312.	3.3	29
16	Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States. Journal of Hydrometeorology, 2018, 19, 499-515.	1.9	22
17	Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach. Water Resources Research, 2018, 54, 2715-2730.	4.2	17
18	Non-stationary hydropower generation projections constrained by environmental and electricity grid operations over the western United States. Environmental Research Letters, 2018, 13, 074035.	5.2	21

#	Article	IF	CITATIONS
19	A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010. Hydrology and Earth System Sciences, 2018, 22, 241-263.	4.9	91
20	Evapotranspiration simulations in ISIMIP2aâ€"Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	5.2	38
21	Evaluating the functionality and streamflow impacts of explicitly modelling forest–snow interactions and canopy gaps in a distributed hydrologic model. Hydrological Processes, 2018, 32, 2128-2140.	2.6	49
22	Modulating factors of hydrologic exchanges in a largeâ€scale river reach: Insights from threeâ€dimensional computational fluid dynamics simulations. Hydrological Processes, 2018, 32, 3446-3463.	2.6	11
23	$0\hat{A}\hat{A}^{\circ}C$ is better?- Thawing temperature optimization study for cancer cryoablation in a mouse model with green fluorescent protein-labeled Lewis lung cancer. Cryobiology, 2017, 75, 80-87.	0.7	6
24	A New Approach to Quantify Shallow Water Hydrologic Exchanges in a Large Regulated River Reach. Water (Switzerland), 2017, 9, 703.	2.7	12
25	Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CPÂv1.0). Geoscientific Model Development, 2017, 10, 4539-4562.	3.6	25
26	Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrology and Earth System Sciences, 2017, 21, 5477-5492.	4.9	92
27	The Contribution of Reservoirs to Global Land Surface Water Storage Variations*. Journal of Hydrometeorology, 2016, 17, 309-325.	1.9	108
28	Effects of G.H.3. On mental symptoms and health-related quality of life among older adults: results of a three-month follow-Up study in Shanghai, China. Nutrition Journal, 2015, 15, 9.	3.4	6
29	Evaluation of Real-Time Satellite Precipitation Data for Global Drought Monitoring. Journal of Hydrometeorology, 2014, 15, 1651-1660.	1.9	27
30	A Prototype Global Drought Information System Based on Multiple Land Surface Models. Journal of Hydrometeorology, 2014, 15, 1661-1676.	1.9	56
31	Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments. Water Resources Research, 2013, 49, 5009-5020.	4.2	42
32	Meander hydrodynamics initiated by river restoration deflectors. Hydrological Processes, 2012, 26, 3378-3392.	2.6	20
33	The Role of Groundwater Withdrawals on River Regulation: Example from the Columbia River Basin. Water Resources Research, 0, , .	4.2	1