Hajime J Yuasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7938247/publications.pdf

Version: 2024-02-01

17 papers	821 citations	687363 13 h-index	17 g-index
17	17	17	998
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. International Journal of Biochemistry and Cell Biology, 2009, 41, 467-471.	2.8	233
2	Tryptophan-Catabolizing Enzymes ââ,¬â€œ Party of Three. Frontiers in Immunology, 2014, 5, 485.	4.8	153
3	Human indoleamine 2,3-dioxygenase-2 has substrate specificity and inhibition characteristics distinct from those of indoleamine 2,3-dioxygenase-1. Amino Acids, 2014, 46, 2155-2163.	2.7	101
4	Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 153, 137-144.	1.6	67
5	1-l-methyltryptophan is a more effective inhibitor of vertebrate IDO2 enzymes than 1-d-methyltryptophan. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 157, 10-15.	1.6	52
6	Low efficiency <scp>IDO</scp> 2 enzymes are conserved in lower vertebrates, whereas higher efficiency <scp>IDO</scp> 1 enzymes are dispensable. FEBS Journal, 2015, 282, 2735-2745.	4.7	47
7	Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. Fungal Genetics and Biology, 2013, 56, 98-106.	2.1	26
8	Efficient tryptophan atabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 128-140.	1.3	26
9	The evolution of three types of indoleamine 2,3 dioxygenases in fungi with distinct molecular and biochemical characteristics. Gene, 2012, 504, 64-74.	2.2	21
10	Molecular Evolution and Characterization of Fungal Indoleamine 2,3-Dioxygenases. Journal of Molecular Evolution, $2011, 72, 160-168$.	1.8	19
11	Comparison of the sequences of Turboand Sulculus indoleamine dioxygenase-like myoglobin genes. Gene, 2003, 308, 89-94.	2.2	16
12	High <scp> </scp> â€Trp affinity of indoleamine 2,3â€dioxygenase 1 is attributed to two residues located in the distal heme pocket. FEBS Journal, 2016, 283, 3651-3661.	4.7	15
13	Molecular evolution of bacterial indoleamine 2,3-dioxygenase. Gene, 2011, 485, 22-31.	2.2	14
14	Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 153, 137-44.	1.6	10
15	Novel Specificity of IDO Enzyme Involved in the Biosynthesis of Mating Pheromone in the Ciliate Blepharisma stoltei. Protist, 2017, 168, 686-696.	1.5	8
16	A single amino acid residue regulates the substrate affinity and specificity of indoleamine 2,3-dioxygenase. Archives of Biochemistry and Biophysics, 2018, 640, 1-9.	3.0	7
17	Methylene blue and ascorbate interfere with the accurate determination of the kinetic properties of IDO2. FEBS Journal, 2021, 288, 4892-4904.	4.7	6