Celso Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7938122/publications.pdf

Version: 2024-02-01

60 papers

1,313 citations

394421 19 h-index 34 g-index

64 all docs 64 docs citations

64 times ranked 1699 citing authors

#	Article	IF	CITATIONS
1	From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Frontiers in Pharmacology, 2018, 9, 777.	3.5	138
2	Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chemistry, 2017, 218, 591-599.	8.2	93
3	Sustainable production of biologically active molecules of marine based origin. New Biotechnology, 2013, 30, 839-850.	4.4	92
4	In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. International Journal of Biological Macromolecules, 2018, 112, 1248-1256.	7.5	80
5	Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius. Marine Drugs, 2015, 13, 713-726.	4.6	67
6	Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson's Disease Model. Marine Drugs, 2019, 17, 85.	4.6	59
7	Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. Algal Research, 2018, 34, 217-234.	4.6	58
8	Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria. Marine Drugs, 2014, 12, 1676-1689.	4.6	52
9	Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC Complementary and Alternative Medicine, 2018, 18, 58.	3.7	46
10	Asparagopsis armata and Sphaerococcus coronopifolius as a natural source of antimicrobial compounds. World Journal of Microbiology and Biotechnology, 2015, 31, 445-451.	3.6	40
11	Highlighting the Biological Potential of the Brown Seaweed Fucus spiralis for Skin Applications. Antioxidants, 2020, 9, 611.	5.1	38
12	<i>Bifurcaria bifurcata</i> : a key macroâ€alga as a source of bioactive compounds and functional ingredients. International Journal of Food Science and Technology, 2016, 51, 1638-1646.	2.7	33
13	Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. Pharmaceutics, 2020, 12, 694.	4.5	33
14	Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. International Journal of Molecular Sciences, 2021, 22, 1888.	4.1	33
15	The marine invasive seaweeds Asparagopsis armata and Sargassum muticum as targets for greener antifouling solutions. Science of the Total Environment, 2021, 750, 141372.	8.0	32
16	High cytotoxicity and anti-proliferative activity of algae extracts on an in vitro model of human hepatocellular carcinoma. SpringerPlus, 2016, 5, 1339.	1.2	31
17	Sea cucumber i> Holothuria forskali / i>, a new resource for aquaculture? Reproductive biology and nutraceutical approach. Aquaculture Research, 2016, 47, 2307-2323.	1.8	31
18	Antioxidant and Cytoprotective Activities of Fucus spiralis Seaweed on a Human Cell in Vitro Model. International Journal of Molecular Sciences, 2017, 18, 292.	4.1	27

#	Article	IF	Citations
19	Antimicrobial and antileukemic effects: in vitro activity of <i>Calyptranthes grandifolia</i> aqueous leaf extract. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 289-301.	2.3	20
20	Lymphocyte genotoxicity and protective effect of Calyptranthes tricona (Myrtaceae) against H2O2-induced cell death in MCF-7 cells. Molecular and Cellular Biochemistry, 2017, 424, 35-43.	3.1	17
21	Neuroprotective Effect of Luteolin-7-O-Glucoside against 6-OHDA-Induced Damage in Undifferentiated and RA-Differentiated SH-SY5Y Cells. International Journal of Molecular Sciences, 2022, 23, 2914.	4.1	16
22	An Insight into Sargassum muticum Cytoprotective Mechanisms against Oxidative Stress on a Human Cell In Vitro Model. Marine Drugs, 2017, 15, 353.	4.6	13
23	Chlorella., 2019,, 187-193.		13
24	Algae from Portuguese Coast Presented High Cytotoxicity and Antiproliferative Effects on an Model of Human Colorectal Cancer. Pharmacognosy Research (discontinued), 2018, 10, 24-30.	0.6	13
25	Neuromodulatory effects of Calyptranthes grandifolia extracts against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomedicine and Pharmacotherapy, 2016, 84, 382-386.	5.6	12
26	Identification of <i>Asparagopsis armata</i> êessociated bacteria and characterization of their bioactive potential. MicrobiologyOpen, 2019, 8, e00824.	3.0	12
27	Natural Approaches for Neurological Disorders—The Neuroprotective Potential of Codium tomentosum. Molecules, 2020, 25, 5478.	3.8	12
28	Marine invasive species for high-value products' exploration $\hat{a}\in$ " Unveiling the antimicrobial potential of Asparagopsis armata against human pathogens. Algal Research, 2020, 52, 102091.	4.6	12
29	Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata. Marine Drugs, 2021, 19, 135.	4.6	12
30	Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS ONE, 2021, 16, e0250954.	2.5	12
31	Antioxidant and antitumor potential of wild and IMTA-cultivated Osmundea pinnatifida. Journal of Oceanology and Limnology, 2019, 37, 825-835.	1.3	10
32	Sphaerococcus coronopifolius bromoterpenes as potential cancer stem cell-targeting agents. Biomedicine and Pharmacotherapy, 2020, 128, 110275.	5.6	10
33	Medusa polyps adherence inhibition: A novel experimental model for antifouling assays. Science of the Total Environment, 2020, 715, 136796.	8.0	10
34	Marine Natural Products as Anticancer Agents. Marine Drugs, 2021, 19, 447.	4.6	10
35	Disclosing the potential of eleganolone for Parkinson's disease therapeutics: Neuroprotective and anti-inflammatory activities. Pharmacological Research, 2021, 168, 105589.	7.1	9
36	<i>In vitro</i> activities of <i>Ceiba speciosa</i> (A.StHil) Ravenna aqueous stem bark extract. Natural Product Research, 2019, 33, 3441-3444.	1.8	8

#	Article	IF	Citations
37	Neuroprotective potential of Myrciaria plinioides D. Legrand extract in an in vitro human neuroblastoma model. Inflammopharmacology, 2020, 28, 737-748.	3.9	8
38	Seaweeds' neuroprotective potential set in vitro on a human cellular stress model. Molecular and Cellular Biochemistry, 2020, 473, 229-238.	3.1	8
39	Spirulina. , 2019, , 409-413.		7
40	Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics, 2021, 13, 218.	4.5	7
41	Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development. Algal Research, 2022, 62, 102634.	4.6	7
42	Gelidiales Are Not Just Agarâ€"Revealing the Antimicrobial Potential of Gelidium corneum for Skin Disorders. Antibiotics, 2022, 11, 481.	3.7	7
43	Sphaerococcus coronopifolius and Asparagopsis armata induced cytotoxicity against HEPG2 cell line. Current Opinion in Biotechnology, 2011, 22, S44-S45.	6.6	6
44	High antioxidant activity of sargassum Muticum and Padina pavonica collected from Peniche coast (Portugal). Current Opinion in Biotechnology, 2013, 24, S116.	6.6	6
45	The Biotechnological and Seafood Potential of <i>Stichopus regalis</i> . Advances in Bioscience and Biotechnology (Print), 2015, 06, 194-204.	0.7	6
46	Brown Seaweeds. , 2019, , 171-176.		5
47	Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Applied Sciences (Switzerland), 2021, 11, 1650.	2.5	5
48	Fluoroquinolone-Based Organic Salts and Ionic Liquids as Highly Bioavailable Broad-Spectrum Antimicrobials. Proceedings (mdpi), 2020, 78, .	0.2	5
49	Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline. Marine Drugs, 2021, 19, 632.	4.6	5
50	Algae from the Peniche coast (Portugal) exhibit new promising antibacterial activities against fish pathogenic bacteria. Current Opinion in Biotechnology, 2011, 22, S33-S34.	6.6	4
51	Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomedicine and Pharmacotherapy, 2022, 149, 112886.	5.6	4
52	Cytotoxic Mechanism of Sphaerodactylomelol, an Uncommon Bromoditerpene Isolated from Sphaerococcus coronopifolius. Molecules, 2021, 26, 1374.	3.8	3
53	Antioxidant and antimicrobial potential of six fucoids from the Mediterranean Sea and the Atlantic Ocean. Journal of the Science of Food and Agriculture, 2022, , .	3.5	3
54	Can a freshwater aquaculture model be used for marine drug discovery?. Aquaculture Research, 2016, 47, 3689-3693.	1.8	2

#	Article	lF	CITATIONS
55	Seaweed's Role in Energetic Transitionâ€"From Environmental Pollution Challenges to Enhanced Electrochemical Devices. Biology, 2022, 11, 458.	2.8	2
56	Red Algae., 2019,, 375-382.		0
57	Mesoporous Silica Nanoparticles with Manganese and Lanthanides Salts: Synthesis, Characterization and Cytotoxicity studies. Dalton Transactions, 2021, 50, 8588-8599.	3.3	O
58	Cosmeceutical potential of crude extracts from Grateloupia turuturu. Frontiers in Marine Science, 0, 5, .	2.5	0
59	Unveiling the microbial community associated with the marine seaweed Fucus spiralis. Frontiers in Marine Science, 0, 5, .	2.5	O
60	Fucus spiralis tissue culture for sustainable phlorotannins production. Aquatic Botany, 2022, 179, 103512.	1.6	0