
Renata C Lima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical and experimental study of effects of Co2+ doping on structural and electronic properties of ZnO. Journal of Physics and Chemistry of Solids, 2021, , 110501.	1.9	5
2	One step microwave-hydrothermal synthesis of rGO–TiO ₂ nanocomposites for enhanced electrochemical oxygen evolution reaction. New Journal of Chemistry, 2020, 44, 6825-6832.	1.4	22
3	Joint Theoretical and Experimental Study on the La Doping Process in In ₂ O ₃ : Phase Transition and Electrocatalytic Activity. Inorganic Chemistry, 2019, 58, 11738-11750.	1.9	22
4	Effect of Gd3+ doping on structural and photocatalytic properties of ZnO obtained by facile microwave-hydrothermal method. SN Applied Sciences, 2019, 1, 1.	1.5	23
5	Palladium doping of In ₂ O ₃ towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catalysis Science and Technology, 2019, 9, 6965-6976.	2.1	19
6	Size Controllable Metal Nanoparticles Anchored on Nitrogen Doped Carbon for Electrocatalytic Energy Conversion. ChemElectroChem, 2019, 6, 1508-1513.	1.7	4
7	Influence of Al2O3 nanoparticles structure immobilized upon glassy-carbon electrode on the electrocatalytic oxidation of phenolic compounds. Sensors and Actuators B: Chemical, 2018, 262, 646-654.	4.0	28
8	Characterization and electrochemical performance of CeO2 and Eu-doped CeO2 films as a manganese redox flow battery component. Journal of Rare Earths, 2018, 36, 1074-1083.	2.5	24
9	Effect of Er 3+ ions on the phase formation and properties of In 2 O 3 nanostructures crystallized upon microwave heating. Journal of Solid State Chemistry, 2017, 249, 58-63.	1.4	14
10	Effects of microwave-assisted hydrothermal treatment and of use of capping reagent on the photophysical properties of SrMoO4 phosphors. Journal of Luminescence, 2017, 192, 818-826.	1.5	16
11	rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method. Applied Surface Science, 2017, 423, 743-751.	3.1	59
12	Morphology of ZnO nanoparticles bound to carbon nanotubes affects electrocatalytic oxidation of phenolic compounds. Sensors and Actuators B: Chemical, 2016, 223, 557-565.	4.0	29
13	Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties. Journal of Solid State Chemistry, 2015, 230, 343-349.	1.4	35
14	Rapid Preparation of (BiO)2CO3Nanosheets by Microwave-Assisted Hydrothermal Method with Promising Photocatalytic Activity Under UV-Vis Light. Journal of the Brazilian Chemical Society, 2015, ,	0.6	3
15	Effect of process parameters on photophysical properties and barium molybdate phosphors characteristics. Ceramics International, 2014, 40, 6719-6729.	2.3	31
16	Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors. Materials Research Bulletin, 2014, 49, 572-576.	2.7	47
17	Aggregates of gold nanoparticles with complexes containing ruthenium as modifiers in carbon paste electrodes. Polyhedron, 2013, 50, 410-417.	1.0	15
18	Photoluminescence and Magnetism in Mn ²⁺ -Doped ZnO Nanostructures Grown Rapidly by the Microwave Hydrothermal Method. Journal of Physical Chemistry C, 2013, 117, 26222-26227.	1.5	50

Renata C Lima

#	Article	IF	CITATIONS
19	Graphiteâ€Composite Electrodes Bulkâ€Modified with (BiO) ₂ CO ₃ and Bi ₂ O ₃ Platesâ€Like Nanostructures for Trace Metal Determination by Anodic Stripping Voltammetry. Electroanalysis, 2013, 25, 765-770.	1.5	28
20	Urea-Based Synthesis of Zinc Oxide Nanostructures at Low Temperature. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	53
21	Formation of \hat{l}^2 -nickel hydroxide plate-like structures under mild conditions and their optical properties. Journal of Solid State Chemistry, 2011, 184, 2818-2823.	1.4	11
22	In2O3 microcrystals obtained from rapid calcination in domestic microwave oven. Materials Research Bulletin, 2010, 45, 1703-1706.	2.7	25
23	ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics, 2010, 181, 775-780.	1.3	92
24	Indium hydroxide nanocubes and microcubes obtained by microwave-assisted hydrothermal method. Journal of Alloys and Compounds, 2010, 497, L25-L28.	2.8	28
25	Preparation of CeO2 by a simple microwave–hydrothermal method. Solid State Ionics, 2009, 180, 288-291.	1.3	81
26	Preparation and characterization of ceria nanospheres by microwave-hydrothermal method. Materials Letters, 2008, 62, 4509-4511.	1.3	206
27	Toward an Understanding of Intermediate- and Short-Range Defects in ZnO Single Crystals. A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 8970-8978.	1.1	64
28	Er3+ as marker for order–disorder determination in the PbTiO3 system. Chemical Physics, 2007, 335, 7-14.	0.9	28
29	Photoluminescent property of mechanically milled BaWO4 powder. Journal of Luminescence, 2007, 126, 741-746.	1.5	26
30	Influence of ligands on the isomerization in [RuCl3(NO)(P–P)] complexes, [P–P=R2P(CH2)nPR2 (n=1–3) and R2P(CH2)POR2, PR2–CHCH–PR2, R=Ph and (C6H11)2P-(CH2)2-P(C6H11)2]. Inorganica Chimica Acta, 2006, 359, 2896-2909.	1.2	19
31	Visible PL Phenomenon at Room Temperature in Disordered Structure of SrWO4 Powder. Journal of Computer-Aided Materials Design, 2006, 12, 111-119.	0.7	7
32	Photoluminescence in disordered Sm-doped PbTiO3: Experimental and theoretical approach. Journal of Applied Physics, 2006, 100, 034917.	1.1	26
33	Synthesis of Metal-Oxide Matrix with Embedded Nickel Nanoparticles by a Bottom-up Chemical Process. Journal of Nanoscience and Nanotechnology, 2003, 3, 516-520.	0.9	2
34	Syntheses, characterization and X-ray structures of the fac-[RuCl3(NO)(dppe)] and the trans-[RuCl(NO)(dppe)2]2+ species. Journal of Inorganic Biochemistry, 2002, 92, 82-88.	1.5	22