
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7937937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease. Journal of Proteome Research, 2022, 21, 118-131.	3.7	15
2	First in Human Evaluation and Dosimetry Calculations for Peptide 124I-p5+14—a Novel Radiotracer for the Detection of Systemic Amyloidosis Using PET/CT Imaging. Molecular Imaging and Biology, 2022, 24, 479-488.	2.6	6
3	Differentiation of leucine and isoleucine residues in peptides using charge transfer dissociation mass spectrometry (CTDâ€MS). Rapid Communications in Mass Spectrometry, 2022, 36, e9246.	1.5	6
4	Moderated Basicity of Endohedral Amine Groups in an Octa ationic Selfâ€Assembled Cage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
5	PIMT-Mediated Labeling of <scp>l</scp> -lsoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins. Journal of the American Society for Mass Spectrometry, 2022, 33, 548-556.	2.8	6
6	Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS). Analyst, The, 2022, 147, 1159-1168.	3.5	3
7	Modifying the internal substituents of self-assembled cages controls their molecular recognition and optical properties. Dalton Transactions, 2022, 51, 10920-10929.	3.3	7
8	Internal Fragments Generated from Different Top-Down Mass Spectrometry Fragmentation Methods Extend Protein Sequence Coverage. Journal of the American Society for Mass Spectrometry, 2021, 32, 1752-1758.	2.8	22
9	A two-trick pony: lysosomal protease cathepsin B possesses surprising ligase activity. RSC Chemical Biology, 2021, 2, 606-611.	4.1	5
10	Efficient Isothiocyanate Modification of Peptides Facilitates Structural Analysis by Radical-Directed Dissociation. Journal of the American Society for Mass Spectrometry, 2021, , .	2.8	1
11	Proteolysis of Amyloid β by Lysosomal Enzymes as a Function of Fibril Morphology. ACS Omega, 2021, 6, 31520-31527.	3.5	5
12	Differentiation of peptide isomers by excited-state photodissociation and ion–molecule interactions. Physical Chemistry Chemical Physics, 2020, 22, 23678-23685.	2.8	4
13	Probing the Stability of Proline Cis/Trans Isomers in the Gas Phase with Ultraviolet Photodissociation. Journal of the American Society for Mass Spectrometry, 2020, 31, 1974-1980.	2.8	10
14	Two-dimensional identification and localization of isomers in crystallin peptides using TWIM-MS. Analyst, The, 2020, 145, 5232-5241.	3.5	9
15	Spontaneous Isomerization of Long-Lived Proteins Provides a Molecular Mechanism for the Lysosomal Failure Observed in Alzheimer's Disease. ACS Central Science, 2019, 5, 1387-1395.	11.3	58
16	Methionine and Selenomethionine as Energy Transfer Acceptors for Biomolecular Structure Elucidation in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2019, 30, 1601-1608.	2.8	2
17	Analysis of Glutamine Deamidation: Products, Pathways, and Kinetics. Analytical Chemistry, 2019, 91, 13032-13038.	6.5	26
18	Evaluating sub-lethal stress from Roundup® exposure in Artemia franciscana using 1H NMR and GC–MS. Aquatic Toxicology, 2019, 212, 77-87.	4.0	8

#	Article	IF	CITATIONS
19	Structural and functional consequences of age-related isomerization in α-crystallins. Journal of Biological Chemistry, 2019, 294, 7546-7555.	3.4	27
20	Synthesis of new S S and C C bonds by photoinitiated radical recombination reactions in the gas phase. International Journal of Mass Spectrometry, 2019, 441, 25-31.	1.5	0
21	Differentiation of peptide isomers and epimers by radical-directed dissociation. Methods in Enzymology, 2019, 626, 67-87.	1.0	8
22	Directed-Backbone Dissociation Following Bond-Specific Carbon-Sulfur UVPD at 213Ânm. Journal of the American Society for Mass Spectrometry, 2018, 29, 1760-1767.	2.8	15
23	A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly. Inorganic Chemistry, 2018, 57, 4155-4163.	4.0	18
24	The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics. Journal of the American Society for Mass Spectrometry, 2018, 29, 150-157.	2.8	31
25	Simplified identification of disulfide, trisulfide, and thioether pairs with 213 nm UVPD. Analyst, The, 2018, 143, 5176-5184.	3.5	15
26	Small Structural Variations Have Large Effects on the Assembly Properties and Spin State of Room Temperature High Spin Fe(II) Iminopyridine Cages. Inorganic Chemistry, 2018, 57, 13386-13396.	4.0	14
27	Glycan Isomer Identification Using Ultraviolet Photodissociation Initiated Radical Chemistry. Analytical Chemistry, 2018, 90, 11581-11588.	6.5	39
28	Differences in α-Crystallin isomerization reveal the activity of protein isoaspartyl methyltransferase (PIMT) in the nucleus and cortex of human lenses. Experimental Eye Research, 2018, 171, 131-141.	2.6	35
29	Tandem Reactivity of a Self-Assembled Cage Catalyst with Endohedral Acid Groups. Journal of the American Chemical Society, 2018, 140, 8078-8081.	13.7	101
30	Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins. Journal of Proteome Research, 2017, 16, 1797-1805.	3.7	34
31	Leveraging Electron Transfer Dissociation for Site Selective Radical Generation: Applications for Peptide Epimer Analysis. Journal of the American Society for Mass Spectrometry, 2017, 28, 1365-1373.	2.8	5
32	Sequence and Solution Effects on the Prevalence of <scp>d</scp> -Isomers Produced by Deamidation. ACS Chemical Biology, 2017, 12, 2875-2882.	3.4	38
33	Stereoselective Postassembly CH Oxidation of Self-Assembled Metal–Ligand Cage Complexes. Inorganic Chemistry, 2017, 56, 11435-11442.	4.0	25
34	The Mechanism Behind Top-Down UVPD Experiments: Making Sense of Apparent Contradictions. Journal of the American Society for Mass Spectrometry, 2017, 28, 1823-1826.	2.8	63
35	Photoelectron Transfer Dissociation Reveals Surprising Favorability of Zwitterionic States in Large Gaseous Peptides and Proteins. Journal of the American Chemical Society, 2017, 139, 10286-10293.	13.7	36
36	Metal-selective coordination and enhanced fluorescence of a self-assembling ligand scaffold. Supramolecular Chemistry, 2017, 29, 936-945.	1.2	4

#	Article	IF	CITATIONS
37	Dehydrogenation of icosahedral carborane anions via gasâ€phase collisional activation. Rapid Communications in Mass Spectrometry, 2016, 30, 1223-1227.	1.5	0
38	Structural Effects of Solvation by 18-Crown-6 on Gaseous Peptides and TrpCage after Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2016, 27, 1661-1669.	2.8	6
39	Electronic Effects on Narcissistic Self-Sorting in Multicomponent Self-Assembly of Fe-Iminopyridine <i>meso</i> -Helicates. Inorganic Chemistry, 2016, 55, 9805-9815.	4.0	28
40	Investigation of peptide microsolvation in the gas phase by radical directed dissociation mass spectrometry. International Journal of Mass Spectrometry, 2016, 409, 81-86.	1.5	3
41	Leveraging ultraviolet photodissociation and spectroscopy to investigate peptide and protein three-dimensional structure with mass spectrometry. Analyst, The, 2016, 141, 4534-4540.	3.5	21
42	Characterization of glycosphingolipid epimers by radical-directed dissociation mass spectrometry. Analyst, The, 2016, 141, 1273-1278.	3.5	31
43	Photolytic determination of charge state for large proteins and fragments in an ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 2015, 29, 322-326.	1.5	1
44	Dissociation of proton-bound complexes reveals geometry and arrangement of double bonds in unsaturated lipids. International Journal of Mass Spectrometry, 2015, 390, 170-177.	1.5	8
45	Enhancing protein disulfide bond cleavage by UV excitation and electron capture dissociation for top-down mass spectrometry. International Journal of Mass Spectrometry, 2015, 390, 137-145.	1.5	36
46	Re-print of "Radical Delivery and Fragmentation for Structural Analysis of Glycerophospholipids― International Journal of Mass Spectrometry, 2015, 378, 225-231.	1.5	1
47	Two-step energy transfer enables use of phenylalanine in action-EET for distance constraint determination in gaseous biomolecules. Chemical Communications, 2015, 51, 12720-12723.	4.1	11
48	Narcissistic Selfâ€Sorting in Selfâ€Assembled Cages of Rare Earth Metals and Rigid Ligands. Angewandte Chemie - International Edition, 2015, 54, 5641-5645.	13.8	70
49	Characterizing gaseous peptide structure with action-EET and simulated annealing. Physical Chemistry Chemical Physics, 2015, 17, 25822-25827.	2.8	9
50	The innate capacity of proteins to protect against reactive radical species. Analyst, The, 2015, 140, 5023-5028.	3.5	5
51	Radical mediated dissection of oligosaccharides. International Journal of Mass Spectrometry, 2014, 372, 22-28.	1.5	16
52	Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer. Soft Matter, 2014, 10, 9651-9656.	2.7	13
53	Radical Additions to Aromatic Residues in Peptides Facilitate Unexpected Side Chain and Backbone Losses. Journal of the American Society for Mass Spectrometry, 2014, 25, 626-635.	2.8	1
54	Identification of Amino Acid Epimerization and Isomerization in Crystallin Proteins by Tandem LC-MS. Analytical Chemistry, 2014, 86, 9733-9741.	6.5	60

#	Article	IF	CITATIONS
55	Radical delivery and fragmentation for structural analysis of glycerophospholipids. International Journal of Mass Spectrometry, 2014, 370, 58-65.	1.5	23
56	ldentification of Inherently Antioxidant Regions in Proteins with Radical-Directed Dissociation Mass Spectrometry. Analytical Chemistry, 2014, 86, 3653-3658.	6.5	6
57	Labeled Protein Recognition at a Membrane Bilayer Interface by Embedded Synthetic Receptors. Langmuir, 2014, 30, 10161-10166.	3.5	16
58	26th ASMS Sanibel Conference on Mass Spectrometry - Ion Activation: Fundamentals, Applications and New Frontiers. Journal of the American Society for Mass Spectrometry, 2014, 25, 1307-1309.	2.8	0
59	Bond-Specific Dissociation Following Excitation Energy Transfer for Distance Constraint Determination in the Gas Phase. Journal of the American Chemical Society, 2014, 136, 13363-13370.	13.7	40
60	Mass Shifting and Radical Delivery with Crown Ether Attachment for Separation and Analysis of Phosphatidylethanolamine Lipids. Analytical Chemistry, 2014, 86, 3020-3027.	6.5	29
61	Radicalâ€directed dissociation of peptides and proteins by infrared multiphoton dissociation and sustained offâ€resonance irradiation collisionâ€induced dissociation with Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 2729-2734.	1.5	7
62	Factors that Influence Competitive Intermolecular Solvation of Protonated Groups in Peptides and Proteins in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2013, 24, 1634-1640.	2.8	8
63	Exploring Radical Migration Pathways in Peptides with Positional Isomers, Deuterium Labeling, and Molecular Dynamics Simulations. Journal of the American Society for Mass Spectrometry, 2013, 24, 524-533.	2.8	16
64	Peptide Radicals and Cation Radicals in the Gas Phase. Chemical Reviews, 2013, 113, 6691-6733.	47.7	191
65	Cooperative Thermodynamic Control of Selectivity in the Self-Assembly of Rare Earth Metal–Ligand Helices. Journal of the American Chemical Society, 2013, 135, 17723-17726.	13.7	55
66	Ultraviolet Action Spectroscopy of Iodine Labeled Peptides and Proteins in the Gas Phase. Journal of Physical Chemistry A, 2013, 117, 1228-1232.	2.5	22
67	Protein structure evolution in liquid DESI as revealed by selective noncovalent adduct protein probing. International Journal of Mass Spectrometry, 2012, 330-332, 220-225.	1.5	18
68	Photoinitiated intramolecular diradical cross-linking of polyproline peptides in the gas phase. Physical Chemistry Chemical Physics, 2012, 14, 16243.	2.8	18
69	Dissociation energies of X–H bonds in amino acids. Physical Chemistry Chemical Physics, 2012, 14, 3148.	2.8	38
70	Examining Protein Surface Structure in Highly Conserved Sequence Variants with Mass Spectrometry. Biochemistry, 2012, 51, 1796-1802.	2.5	6
71	Discriminating <scp>d</scp> -Amino Acid-Containing Peptide Epimers by Radical-Directed Dissociation Mass Spectrometry. Analytical Chemistry, 2012, 84, 6814-6820.	6.5	77
72	Tyrosine Deprotonation Yields Abundant and Selective Backbone Cleavage in Peptide Anions upon Negative Electron Transfer Dissociation and Ultraviolet Photodissociation. Journal of the American Chemical Society, 2012, 134, 15624-15627.	13.7	9

#	Article	IF	CITATIONS
73	Facile identification of photocleavable reactive metabolites and oxidative stress biomarkers in proteins via mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 403, 2269-2277.	3.7	10
74	Reflections on Charge State Distributions, Protein Structure, and the Mystical Mechanism of Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2012, 23, 1-6.	2.8	49
75	Dissociation Chemistry of Hydrogen-Deficient Radical Peptide Anions. Journal of the American Society for Mass Spectrometry, 2012, 23, 460-468.	2.8	20
76	Radical Conversion and Migration in Electron Capture Dissociation. Journal of the American Chemical Society, 2011, 133, 6997-7006.	13.7	43
77	Direct Elucidation of Disulfide Bond Partners Using Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry, 2011, 83, 6455-6458.	6.5	91
78	Facile Identification of Phosphorylation Sites in Peptides by Radical Directed Dissociation. Analytical Chemistry, 2011, 83, 6818-6826.	6.5	30
79	Rapid, quantitative, and site specific synthesis of biomolecular radicals from a simple photocaged precursor. Chemical Communications, 2011, 47, 2835.	4.1	35
80	Investigating the gas phase structure of KIX with radical directed dissociation and molecular dynamics: Retention of the native structure. International Journal of Mass Spectrometry, 2011, 308, 225-231.	1.5	17
81	Dynamic Interchanging Native States of Lymphotactin Examined by SNAPP-MS. Journal of the American Society for Mass Spectrometry, 2011, 22, 399-407.	2.8	8
82	Probing sites of histidine phosphorylation with iodination and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2240-2246.	1.5	11
83	Fragmentation chemistry observed in hydrogen deficient radical peptides generated from N-nitrosotryptophan residues. International Journal of Mass Spectrometry, 2010, 294, 83-87.	1.5	25
84	Site-Selective Fragmentation of Peptides and Proteins at Quinone-Modified Cysteine Residues Investigated by ESI-MS. Analytical Chemistry, 2010, 82, 4006-4014.	6.5	55
85	Elucidating the Tertiary Structure of Protein Ions in Vacuo with Site Specific Photoinitiated Radical Reactions. Journal of the American Chemical Society, 2010, 132, 8602-8609.	13.7	94
86	Radical Directed Dissociation for Facile Identification of Iodotyrosine Residues Using Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2010, 82, 3826-3833.	6.5	34
87	Ultraviolet Photodissociation: Developments towards Applications for Massâ€5pectrometryâ€Based Proteomics. Angewandte Chemie - International Edition, 2009, 48, 7130-7137.	13.8	123
88	Rapid peptide fragmentation without electrons, collisions, infrared radiation, or native chromophores. Journal of the American Society for Mass Spectrometry, 2009, 20, 385-393.	2.8	28
89	Deciphering the peptide iodination code: Influence on subsequent gas-phase radical generation with photodissociation ESI-MS. Journal of the American Society for Mass Spectrometry, 2009, 20, 965-971.	2.8	37
90	Electronâ€induced dissociation of protonated peptides yields backbone fragmentation consistent with a hydrogenâ€deficient radical. Rapid Communications in Mass Spectrometry, 2009, 23, 2099-2101.	1.5	19

#	Article	IF	CITATIONS
91	Tracking radical migration in large hydrogen deficient peptides with covalent labels: Facile movement does not equal indiscriminate fragmentation. Journal of the American Society for Mass Spectrometry, 2009, 20, 1148-1158.	2.8	63
92	Side Chain Chemistry Mediates Backbone Fragmentation in Hydrogen Deficient Peptide Radicals. Journal of Proteome Research, 2009, 8, 958-966.	3.7	137
93	One Ring to Bind Them All: Shape-Selective Complexation of Phenylenediamine Isomers with Cucurbit[6]uril in the Gas Phase. Journal of Physical Chemistry A, 2009, 113, 989-997.	2.5	50
94	Ion–molecule reactions reveal facile radical migration in peptides. Chemical Communications, 2009, , 5015.	4.1	56
95	Protein-metal interactions of calmodulin and α-synuclein monitored by selective noncovalent adduct protein probing mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 1663-1672.	2.8	46
96	Formation of the serine octamer: Ion evaporation or charge residue?. International Journal of Mass Spectrometry, 2008, 270, 166-172.	1.5	30
97	Exploring the Mechanism of Selective Noncovalent Adduct Protein Probing Mass Spectrometry Utilizing Site-Directed Mutagenesis To Examine Ubiquitin. Analytical Chemistry, 2008, 80, 3846-3852.	6.5	35
98	Residue-Specific Radical-Directed Dissociation of Whole Proteins in the Gas Phase. Journal of the American Chemical Society, 2008, 130, 351-358.	13.7	188
99	Site-Specific Radical Directed Dissociation of Peptides at Phosphorylated Residues. Journal of the American Chemical Society, 2008, 130, 12212-12213.	13.7	69
100	Surveying Ubiquitin Structure by Noncovalent Attachment of Distance Constrained Bis(crown) Ethers. Analytical Chemistry, 2008, 80, 5059-5064.	6.5	17
101	Synthesis of 2-Quinuclidonium by Eliminating Water:Â Experimental Quantification of the High Basicity of Extremely Twisted Amides. Journal of the American Chemical Society, 2007, 129, 1864-1865.	13.7	30
102	Dissociation of a protonated secondary amine in the gas phase via an ion–neutral complex. International Journal of Mass Spectrometry, 2007, 265, 302-307.	1.5	19
103	Evidence for Spontaneous Resolution of Icosahedral Proline. Journal of the American Chemical Society, 2006, 128, 15988-15989.	13.7	18
104	Chirally Directed Formation of Nanometer-Scale Proline Clusters. Journal of the American Chemical Society, 2006, 128, 10833-10839.	13.7	33
105	Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-crown-6. Journal of the American Society for Mass Spectrometry, 2006, 17, 1209-1215.	2.8	67
106	Ion funnels for the masses: Experiments and simulations with a simplified ion funnel. Journal of the American Society for Mass Spectrometry, 2005, 16, 1708-1712.	2.8	57
107	Do Homochiral Aggregates Have an Entropic Advantage?. Journal of Physical Chemistry B, 2005, 109, 440-444.	2.6	45
108	Cytochromecâ^'Crown Ether Complexes as Supramolecular Catalysts:Â Cold-Active Synzymes for Asymmetric Sulfoxide Oxidation in Methanol. Inorganic Chemistry, 2005, 44, 904-910.	4.0	23

#	ARTICLE	IF	CITATIONS
109	Selective molecular recognition of arginine by anionic salt bridge formation with bis-phosphate crown ethers: implications for gas phase peptide acidity from adduct dissociation. Journal of the American Society for Mass Spectrometry, 2004, 15, 616-624.	2.8	24
110	Gas-Phase Zwitterions in the Absence of a Net Charge. Journal of Physical Chemistry A, 2004, 108, 10861-10864.	2.5	46
111	Spontaneous Anti-Resolution in Heterochiral Clusters of Serine. Journal of the American Chemical Society, 2004, 126, 4110-4111.	13.7	42
112	Formation of Nanometer-Scale Serine Clusters by Sonic Spray. Journal of Physical Chemistry B, 2004, 108, 6105-6111.	2.6	43
113	Gas-Phase H/D Exchange of Sodiated Glycine Oligomers with ND3:Â Exchange Kinetics Do Not Reflect Parent Ion Structures. Journal of the American Chemical Society, 2004, 126, 6485-6490.	13.7	56
114	Molecular Mousetraps: Gas-Phase Studies of the Covalent Coupling of Noncovalent Complexes Initiated by Reactive Carbenes Formed by Controlled Activation of Diazo Precursors. Angewandte Chemie - International Edition, 2003, 42, 1012-1015.	13.8	27
115	Cover Picture: Molecular Mousetraps: Gas-Phase Studies of the Covalent Coupling of Noncovalent Complexes Initiated by Reactive Carbenes Formed by Controlled Activation of Diazo Precursors (Angew. Chem. Int. Ed. 9/2003). Angewandte Chemie - International Edition, 2003, 42, 957-957.	13.8	0
116	Abiotic synthesis of ATP from AMP in the gas phase: implications for the origin of biologically important molecules from small molecular clusters. International Journal of Mass Spectrometry, 2003, 227, 147-159.	1.5	20
117	Biomimetic approaches to gas phase peptide chemistry: combining selective binding motifs with reactive carbene precursors to form molecular mousetraps. International Journal of Mass Spectrometry, 2003, 228, 851-864.	1.5	23
118	Gas-Phase Synthesis of Charged Copper and Silver Fischer Carbenes from Diazomalonates:  Mechanistic and Conformational Considerations in Metal-Mediated Wolff Rearrangements. Journal of the American Chemical Society, 2003, 125, 4478-4486.	13.7	73
119	Nanocrystalline Aggregation of Serine Detected by Electrospray Ionization Mass Spectrometry:  Origin of the Stable Homochiral Gas-Phase Serine Octamer. Journal of Physical Chemistry B, 2002, 106, 1219-1228.	2.6	124
120	Cooperative Salt Bridge Stabilization of Gas-Phase Zwitterions in Neutral Arginine Clusters. Journal of Physical Chemistry A, 2002, 106, 32-34.	2.5	76
121	Molecular recognition of arginine in small peptides by supramolecular complexation with dibenzo-30-crown-10 ether. International Journal of Mass Spectrometry, 2002, 220, 87-96.	1.5	36
122	The unusually high proton affinity of Aza-18-crown-6 ether: Implications for the molecular recognition of lysine in peptides by lariat crown ethers. Journal of the American Society for Mass Spectrometry, 2002, 13, 493-498.	2.8	37
123	Salt Bridge Stabilization of Charged Zwitterionic Arginine Aggregates in the Gas Phase. Journal of the American Chemical Society, 2001, 123, 3577-3583.	13.7	111
124	Site specific sequestering and stabilization of charge in peptides by supramolecular adduct formation with 18-crown-6 ether by way of electrospray ionization. International Journal of Mass Spectrometry, 2001, 210-211, 613-623.	1.5	118
125	Spontaneous chiral separation in noncovalent molecular clusters. Chirality, 2001, 13, 703-706.	2.6	60
126	Potential curves for several electronic states of the MgHe, Mg+He, and Mg+2He van der Waals complexes. Journal of Chemical Physics, 1999, 111, 4999-5003.	3.0	28

#	Article	IF	CITATIONS
127	Resonant two-color photoionization threshold measurements of the Zn+(4s)â‹Ar bond strength: Model-potential analysis of M+(ns)â‹Ar interactions. Journal of Chemical Physics, 1999, 110, 6298-6305.	3.0	18
128	The lowest energy and excited states of the MgNe van der Waals molecule. Chemical Physics Letters, 1999, 301, 325-330.	2.6	3
129	Potential curves for the ground states and some excited states of MgNe, Mg+Ne, and Mg+2Ne van der Waals complexes. Journal of Chemical Physics, 1999, 110, 8443-8447.	3.0	20
130	Moderated Basicity of Endohedral Amine Groups in an Octaâ€Cationic Selfâ€Assembled Cage. Angewandte Chemie, 0, , .	2.0	9
131	LCâ€MS Reveals Isomeric Inhibition of Proteolysis by Lysosomal Cathepsins. Analysis & Sensing, 0, , .	2.0	1