List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7937900/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Differentiation and Expansion of Human Extra-Embryonic Endoderm Cell Lines from NaÃ⁻ve Pluripotent<br>Stem Cells. Methods in Molecular Biology, 2022, 2416, 105-116.                                    | 0.9  | 1         |
| 2  | Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids.<br>ELife, 2022, 11, .                                                                              | 6.0  | 32        |
| 3  | Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates β cell differentiation. Stem Cell Reports, 2022, 17, 1215-1228.                         | 4.8  | 11        |
| 4  | Identification of the central intermediate in the extra-embryonic to embryonic endoderm transition through single-cell transcriptomics. Nature Cell Biology, 2022, 24, 833-844.                         | 10.3 | 15        |
| 5  | Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Molecular Cell, 2021, 81, 2166-2182.e6.                                                     | 9.7  | 94        |
| 6  | Changes in Cell Morphology and Actin Organization in Embryonic Stem Cells Cultured under<br>Different Conditions. Cells, 2021, 10, 2859.                                                                | 4.1  | 2         |
| 7  | From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development<br>(Cambridge), 2020, 147, .                                                                              | 2.5  | 47        |
| 8  | Can a Cell Put Its Arms around a Memory?. Cell Stem Cell, 2020, 26, 609-610.                                                                                                                            | 11.1 | 3         |
| 9  | Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature, 2019, 575, 355-360.                                                                                                    | 27.8 | 64        |
| 10 | An automated microfluidic device for time-lapse imaging of mouse embryonic stem cells.<br>Biomicrofluidics, 2019, 13, 054102.                                                                           | 2.4  | 2         |
| 11 | NaÃ <sup>-</sup> ve human pluripotent stem cells respond to Wnt, Nodal, and LIF signalling to produce expandable<br>naÃ <sup>-</sup> ve extra-embryonic endoderm. Development (Cambridge), 2019, 146, . | 2.5  | 95        |
| 12 | Genetic Deletion of Hesx1 Promotes Exit from the Pluripotent State and Impairs Developmental<br>Diapause. Stem Cell Reports, 2019, 13, 970-979.                                                         | 4.8  | 9         |
| 13 | Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome. Cell, 2018, 174, 231-244.e12.                                                                                  | 28.9 | 313       |
| 14 | HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Nature Communications, 2018, 9, 2704.                                                           | 12.8 | 70        |
| 15 | Transcriptional regulation of Hhex in hematopoiesis and hematopoietic stem cell ontogeny.<br>Developmental Biology, 2017, 424, 236-245.                                                                 | 2.0  | 11        |
| 16 | Properties of embryoid bodies. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e259.                                                                                                   | 5.9  | 76        |
| 17 | Surveillance for Secure Differentiation. Cell Stem Cell, 2017, 20, 3-5.                                                                                                                                 | 11.1 | 7         |
| 18 | Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm.<br>Nature Cell Biology, 2017, 19, 1164-1177.                                                        | 10.3 | 67        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Four simple rules that are sufficient to generate the mammalian blastocyst. PLoS Biology, 2017, 15, e2000737.                                                                                    | 5.6 | 44        |
| 20 | Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports, 2016, 7, 177-191.                                  | 4.8 | 55        |
| 21 | Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors. Current Protocols in Stem Cell Biology, 2016, 36, 1G.3.1-1G.3.12.                                                 | 3.0 | 3         |
| 22 | Optical quantification of forces at play during stem cell differentiation. , 2016, , .                                                                                                           |     | 0         |
| 23 | Polycomb enables primitive endoderm lineage priming in embryonic stem cells. ELife, 2016, 5, .                                                                                                   | 6.0 | 28        |
| 24 | LIF supports primitive endoderm expansion during pre-implantation development. Development (Cambridge), 2015, 142, 3488-99.                                                                      | 2.5 | 52        |
| 25 | Resolving Heterogeneity: Fluorescence-Activated Cell Sorting of Dynamic Cell Populations from<br>Feeder-Free Mouse Embryonic Stem Cell Culture. Methods in Molecular Biology, 2015, 1341, 25-40. | 0.9 | 3         |
| 26 | Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression.<br>Developmental Biology, 2015, 397, 56-66.                                                       | 2.0 | 25        |
| 27 | The molecular underpinnings of totipotency. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2014, 369, 20130549.                                                      | 4.0 | 31        |
| 28 | Erk Signaling Suppresses Embryonic Stem Cell Self-Renewal to Specify Endoderm. Cell Reports, 2014, 9, 2056-2070.                                                                                 | 6.4 | 96        |
| 29 | The POU-er of gene nomenclature. Development (Cambridge), 2014, 141, 2921-2923.                                                                                                                  | 2.5 | 33        |
| 30 | Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions. Cell Reports, 2013, 3, 1945-1957.                                                                                      | 6.4 | 207       |
| 31 | A Conserved Oct4/POUV-Dependent Network Links Adhesion and Migration to Progenitor<br>Maintenance. Current Biology, 2013, 23, 2233-2244.                                                         | 3.9 | 41        |
| 32 | Oct4: The Final Frontier, Differentiation Defining Pluripotency. Developmental Cell, 2013, 25, 547-548.                                                                                          | 7.0 | 5         |
| 33 | PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix.<br>ELife, 2013, 2, e00806.                                                                   | 6.0 | 32        |
| 34 | Survival of the fattest. ELife, 2013, 2, e01760.                                                                                                                                                 | 6.0 | 2         |
| 35 | Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency.<br>Cell Reports, 2012, 1, 99-109.                                                            | 6.4 | 61        |
| 36 | HOXB4 Can Enhance the Differentiation of Embryonic Stem Cells by Modulating the Hematopoietic<br>Niche. Stem Cells, 2012, 30, 150-160.                                                           | 3.2 | 25        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Gene expression heterogeneities in embryonic stem cell populations: origin and function. Current<br>Opinion in Cell Biology, 2011, 23, 650-656.                                                                           | 5.4  | 96        |
| 38 | FGF signalling as a mediator of lineage transitions—Evidence from embryonic stem cell<br>differentiation. Journal of Cellular Biochemistry, 2010, 110, 10-20.                                                             | 2.6  | 32        |
| 39 | Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of<br>an Early Endodermal Transcript. PLoS Biology, 2010, 8, e1000379.                                                      | 5.6  | 219       |
| 40 | A Wider Context for Gene Trap Mutagenesis. Methods in Enzymology, 2010, 477, 271-295.                                                                                                                                     | 1.0  | 9         |
| 41 | Investigation of microsphere-mediated cellular delivery by chemical, microscopic and gene expression analysis. Molecular BioSystems, 2010, 6, 399-409.                                                                    | 2.9  | 34        |
| 42 | Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells. Nucleic Acids Research, 2009, 37, e129-e129.                                                                        | 14.5 | 12        |
| 43 | Microsphereâ€Mediated Protein Delivery into Cells. ChemBioChem, 2009, 10, 1453-1456.                                                                                                                                      | 2.6  | 27        |
| 44 | Microspheres as a vehicle for biomolecule delivery to neural stem cells. New Biotechnology, 2009, 25, 442-449.                                                                                                            | 4.4  | 14        |
| 45 | Microsphere-based tracing and molecular delivery in embryonic stem cells. Biomaterials, 2009, 30, 5853-5861.                                                                                                              | 11.4 | 28        |
| 46 | Differentiation of Embryonic Stem Cells into Anterior Definitive Endoderm. Current Protocols in<br>Stem Cell Biology, 2009, 10, Unit 1G.3.                                                                                | 3.0  | 10        |
| 47 | Anterior Definitive Endoderm from ESCs Reveals a Role for FGF Signaling. Cell Stem Cell, 2008, 3, 402-415.                                                                                                                | 11.1 | 113       |
| 48 | Inhibition of Cortical Neuron Differentiation by Groucho/TLE1 Requires Interaction with WRPW, but<br>Not Eh1, Repressor Peptides. Journal of Biological Chemistry, 2008, 283, 24881-24888.                                | 3.4  | 38        |
| 49 | A novel triple fusion reporter system for use in gene trap mutagenesis. Genesis, 2007, 45, 353-360.                                                                                                                       | 1.6  | 11        |
| 50 | Hex acts with β-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and<br>Nodal. Development (Cambridge), 2006, 133, 3709-3722.                                                            | 2.5  | 45        |
| 51 | Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development (Cambridge), 2006, 133, 2011-2022.                                                                       | 2.5  | 144       |
| 52 | Characterizing Embryonic Gene Expression Patterns in the Mouse Using Nonredundant<br>Sequence-Based Selection. Genome Research, 2003, 13, 2609-2620.                                                                      | 5.5  | 27        |
| 53 | A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction. Journal of Clinical Investigation, 2003, 112, 1192-1201.                                    | 8.2  | 110       |
| 54 | Targeted Mutagenesis of the Hira Gene Results in Gastrulation Defects and Patterning Abnormalities of Mesoendodermal Derivatives Prior to Early Embryonic Lethality. Molecular and Cellular Biology, 2002, 22, 2318-2328. | 2.3  | 126       |

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Pluripotency and tumorigenicity. Nature Genetics, 2002, 32, 557-558.                                                                                                         | 21.4 | 40        |
| 56 | Molecular effects of novel mutations in <i>Hesx1/HESX1</i> associated with human pituitary disorders.<br>Development (Cambridge), 2001, 128, 5189-5199.                      | 2.5  | 118       |
| 57 | Molecular Genetics of Septo-Optic Dysplasia. Hormone Research in Paediatrics, 2000, 53, 26-33.                                                                               | 1.8  | 15        |
| 58 | Interactions between an HMC-1 protein and members of the Rel family. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10679-10683. | 7.1  | 69        |
| 59 | Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genetics, 1998, 19, 125-133.                                     | 21.4 | 719       |
| 60 | Interactions of a Rel protein with its inhibitor Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10242-10246.                     | 7.1  | 44        |
| 61 | An HMG-like protein that can switch a transcriptional activator to a repressor. Nature, 1994, 371, 175-179.                                                                  | 27.8 | 229       |
| 62 | New eukaryotic transcriptional repressers. Nature, 1993, 363, 648-652.                                                                                                       | 27.8 | 92        |