Tomohiro Maegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7937575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous Pd/C-Catalyzed Ligand-Free, Room-Temperature Suzuki–Miyaura Coupling Reactions in Aqueous Media. Chemistry - A European Journal, 2007, 13, 5937-5943.	3.3	231
2	Pd/C-Catalyzed Chemoselective Hydrogenation in the Presence of Diphenylsulfide. Organic Letters, 2006, 8, 3279-3281.	4.6	137
3	Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry - A European Journal, 2009, 15, 6953-6963.	3.3	129
4	Hypervalent Iodine(V)-Induced Asymmetric Oxidation of Sulfides to Sulfoxides Mediated by Reversed Micelles:Â Novel Nonmetallic Catalytic System. Journal of Organic Chemistry, 1999, 64, 3519-3523.	3.2	127
5	Pd/C–Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions. Tetrahedron, 2006, 62, 7926-7933.	1.9	95
6	Efficient Câ^'H/Câ^'D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Organic Letters, 2004, 6, 1485-1487.	4.6	93
7	Ligandâ€Free and Heterogeneous Palladium on Carbon atalyzed Hetero‣uzuki–Miyaura Cross oupling. Advanced Synthesis and Catalysis, 2010, 352, 718-730.	['] 4.3	93
8	Aromatic ring favorable and efficient H–D exchange reaction catalyzed by Pt/C. Tetrahedron Letters, 2005, 46, 6995-6998.	1.4	89
9	Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron, 2006, 62, 11925-11932.	1.9	88
10	Novel Palladiumâ€on arbon/Diphenyl Sulfide Complex for Chemoselective Hydrogenation: Preparation, Characterization, and Application. Advanced Synthesis and Catalysis, 2008, 350, 406-410.	4.3	88
11	Ligandâ€Free Sonogashira Coupling Reactions with Heterogeneous Pd/C as the Catalyst. Chemistry - A European Journal, 2008, 14, 6994-6999.	3.3	84
12	Partial Hydrogenation of Alkynes to <i>cis</i> â€Olefins by Using a Novel Pd ⁰ –Polyethyleneimine Catalyst. Chemistry - A European Journal, 2008, 14, 5109-5111.	3.3	84
13	General method of obtaining deuterium-labeled heterocyclic compounds using neutral D2O with heterogeneous Pd/C. Tetrahedron, 2006, 62, 10954-10961.	1.9	83
14	Heterogeneous Pd/C-catalyzed ligand-free Suzuki–Miyaura coupling reaction using aryl boronic esters. Tetrahedron, 2007, 63, 10596-10602.	1.9	79
15	Efficient and Convenient Heterogeneous Palladium atalyzed Regioselective Deuteration at the Benzylic Position. Chemistry - A European Journal, 2008, 14, 664-673.	3.3	74
16	Mild and Efficient H/D Exchange of Alkanes Based on CH Activation Catalyzed by Rhodium on Charcoal. Angewandte Chemie - International Edition, 2008, 47, 5394-5397.	13.8	71
17	Palladium on Carbonâ€Catalyzed Synthesis of Benzil Derivatives from 1,2â€Diarylalkynes with DMSO and Molecular Oxygen as Dual Oxidants. Advanced Synthesis and Catalysis, 2010, 352, 1630-1634.	4.3	70
18	Efficient H/D Exchange Reactions of Alkyl-Substituted Benzene Derivatives by Means of the Pd/C–H2–D2O System. Chemistry - A European Journal, 2007, 13, 4052-4063.	3.3	69

#	Article	IF	CITATIONS
19	Efficient and Selective Pt/C-Catalyzed H–D Exchange Reaction of Aromatic Rings. Bulletin of the Chemical Society of Japan, 2008, 81, 278-286.	3.2	68
20	Complete Replacement of H2 by D2 via Pd/C-Catalyzed H/D Exchange Reaction. Organic Letters, 2004, 6, 3521-3523.	4.6	66
21	Facile and Convenient Method of Deuterium Gas Generation Using a Pd/Câ€Catalyzed H ₂ –D ₂ Exchange Reaction and Its Application to Synthesis of Deuteriumâ€Labeled Compounds. Chemistry - A European Journal, 2008, 14, 3371-3379.	3.3	66
22	A Convenient and Effective Method for the Regioselective Deuteration of Alcohols. Advanced Synthesis and Catalysis, 2008, 350, 2215-2218.	4.3	56
23	A novel and direct synthesis of alkylated 2,2′-bithiophene derivatives using a combination of hypervalent iodine(iii) reagent and BF3·Et2O. Organic and Biomolecular Chemistry, 2003, 1, 1647-1649.	2.8	55
24	Palladium-Catalyzed Base-Selective H-D Exchange Reaction of Nucleosides in Deuterium Oxide. Synlett, 2005, 2005, 1385-1388.	1.8	54
25	Synergistic Effect of a Palladium-on-Carbon/Platinum-on-Carbon Mixed Catalyst in Hydrogen/Deuterium Exchange Reactions of Alkyl-Substituted Aromatic Compounds. Advanced Synthesis and Catalysis, 2006, 348, 1025-1028.	4.3	54
26	Novel Pd/C-Catalyzed Redox Reactions between Aliphatic Secondary Alcohols and Ketones under Hydrogenation Conditions:Â Application to Hâr'D Exchange Reaction and the Mechanistic Study. Journal of Organic Chemistry, 2007, 72, 2143-2150.	3.2	54
27	Evaluation of Aromatic Amination Catalyzed by Palladium on Carbon: A Practical Synthesis of Triarylamines. Advanced Synthesis and Catalysis, 2008, 350, 2767-2777.	4.3	54
28	Novel and efficient oxidative biaryl coupling reaction of alkylarenes using a hypervalent iodine(III) reagent. Tetrahedron Letters, 2002, 43, 9241-9244.	1.4	53
29	Pd/C-Catalyzed Deoxygenation of Phenol Derivatives Using Mg Metal and MeOH in the Presence of NH4OAc. Organic Letters, 2006, 8, 987-990.	4.6	53
30	[Cu(OH)(TMEDA)] ₂ Cl ₂ -Catalyzed Regioselective 2-Arylation of 5-Substituted Tetrazoles with Boronic Acids under Mild Conditions. Journal of Organic Chemistry, 2014, 79, 6703-6707.	3.2	53
31	Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Organic and Biomolecular Chemistry, 2012, 10, 293-304.	2.8	51
32	A Highly Active Heterogeneous Palladium Catalyst Supported on a Synthetic Adsorbent. Chemistry - A European Journal, 2009, 15, 834-837.	3.3	45
33	Palladium on charcoal-catalyzed ligand-free Stille coupling. Tetrahedron, 2010, 66, 8654-8660.	1.9	44
34	Synthesis of deuteriumâ€labelled drugs by hydrogen–deuterium (H–D) exchange using heterogeneous catalysis. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 686-692.	1.0	44
35	Palladium on carbon-catalyzed synthesis of 2- and 2,3-substituted indoles under heterogeneous conditions. Organic and Biomolecular Chemistry, 2010, 8, 3338.	2.8	44
36	Palladium on carbon-catalyzed solvent-free and solid-phase hydrogenation and Suzuki–Miyaura reaction. Tetrahedron, 2011, 67, 8628-8634.	1.9	43

#	Article	IF	CITATIONS
37	Platinum on Carbonâ€Catalyzed Hydrodefluorination of Fluoroarenes using Isopropyl Alcoholâ€Waterâ€Sodium Carbonate Combination. Advanced Synthesis and Catalysis, 2012, 354, 777-782.	4.3	42
38	Development of Molecular Sievesâ€5upported Palladium Catalyst and Chemoselective Hydrogenation of Unsaturated Bonds in the Presence of Nitro Groups. Advanced Synthesis and Catalysis, 2009, 351, 2091-2095.	4.3	41
39	Mechanistic Study of a Pd/C-Catalyzed Reduction of Aryl Sulfonates Using the Mg–MeOH–NH4OAc System. Chemistry - A European Journal, 2007, 13, 1432-1441.	3.3	39
40	Pd(0)–polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes. Journal of Molecular Catalysis A, 2009, 307, 77-87.	4.8	39
41	Chemoselective hydrogenation using molecular sieves-supported Pd catalysts: Pd/MS3A and Pd/MS5A. Tetrahedron, 2012, 68, 8293-8299.	1.9	37
42	Remarkable effect of 2,2′-bipyridyl: mild and highly chemoselective deprotection of methoxymethyl (MOM) ethers in combination with TMSOTf (TESOTf)–2,2′-bipyridyl. Chemical Communications, 2009, , 4429.	4.1	34
43	Copperâ€Mediated Reductive Amination of Aryl Halides with Trimethylsilyl Azide. Chemistry - A European Journal, 2010, 16, 7372-7375.	3.3	34
44	(+)-Sorangicin A: evolution of a viable synthetic strategy. Tetrahedron, 2011, 67, 9809-9828.	1.9	32
45	Pd/C(en) Catalyzed Chemoselective Hydrogenation in the Presence of Aryl Nitriles. Chemical and Pharmaceutical Bulletin, 2007, 55, 837-839.	1.3	29
46	Synthesis of Base-selectively Deuterium-labelled Nucleosides by the Pd/C-catalyzed H-D Exchange Reaction in Deuterium Oxide. Heterocycles, 2005, 66, 361.	0.7	28
47	Catalyst-Dependent Selective Hydrogenation of Nitriles: Selective Synthesis of Tertiary and Secondary Amines. Journal of Organic Chemistry, 2017, 82, 10939-10944.	3.2	28
48	Remarkable effect of phosphine on the reactivity of O,P-acetal—efficient substitution reaction of O,P-acetal. Chemical Communications, 2010, 46, 3976.	4.1	27
49	Palladium on carbon-diethylamine-mediated hydrodeoxygenation of phenol derivatives under mild conditions. Tetrahedron, 2007, 63, 1270-1280.	1.9	26
50	Method for the Efficient Synthesis of Highly-Substituted Oxetan- and Azetidin-, Dihydrofuran- and Pyrrolidin-3-ones and Its Application to the Synthesis of (±)-Pseudodeflectusin. Organic Letters, 2012, 14, 4798-4801.	4.6	26
51	Aromatic Halogenation Using <i>N</i> -Halosuccinimide and PhSSiMe ₃ or PhSSPh. Journal of Organic Chemistry, 2019, 84, 7405-7410.	3.2	24
52	Development of a Practical and Scalable Preparation using Sonication of Pd/Fibroin Catalyst for Chemoselective Hydrogenation. Synthetic Communications, 2007, 37, 4381-4388.	2.1	23
53	Novel Regiocontrolled Protection of 1,2- and 1,3-Diols via Mild Cleavage of Methylene Acetals. Organic Letters, 2009, 11, 5138-5141.	4.6	23
54	The reaction of acetal-type protective groups in combination with TMSOTf and 2,2′-bipyridyl; mild and chemoselective deprotection and direct conversion to other protective groups. Tetrahedron, 2011, 67, 2949-2960.	1.9	23

#	Article	IF	CITATIONS
55	Copper/HP20: Novel and Polymer-Supported Copper Catalyst for Huisgen Cycloaddition. Heterocycles, 2009, 77, 521.	0.7	22
56	Synthesis of 3-acylindoles by oxidative rearrangement of 2-aminochalcones using a hypervalent iodine reagent and cyclization sequence. Organic and Biomolecular Chemistry, 2017, 15, 6702-6705.	2.8	21
57	Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium(<scp>v</scp>) complex. Organic Chemistry Frontiers, 2021, 8, 4878-4885.	4.5	20
58	Decarboxylative Halogenation of Indolecarboxylic Acids Using Hypervalent Iodine(III) Reagent and Its Application to the Synthesis of Polybromoindoles. Heterocycles, 2015, 91, 561.	0.7	17
59	Hypervalent Iodine-Mediated Beckmann Rearrangement of Ketoximes. Synlett, 2018, 29, 1465-1468.	1.8	17
60	Novel deprotection method of Fmoc group under neutral hydrogenation conditions. Amino Acids, 2009, 36, 493-499.	2.7	16
61	Facile and Efficient Postsynthetic Tritium Labeling Method Catalyzed by Pd/C in HTO. Journal of Organic Chemistry, 2005, 70, 10581-10583.	3.2	15
62	Mild Deprotection of Methylene Acetals in Combination with Trimethylsilyl Triflate-2,2'-Bipyridyl. Chemical and Pharmaceutical Bulletin, 2010, 58, 426-428.	1.3	15
63	Facile Hydrogenation of Ketones Catalyzed by Platinum on Carbon under Ordinary Pressures and Temperatures. ChemCatChem, 2011, 3, 1624-1628.	3.7	14
64	Methylene Acetal Formation from 1,2- and 1,3-Diols Using an O,S-Acetal, 1,3-Dibromo-5,5-dimethylhydantoin, and BHT. Journal of Organic Chemistry, 2013, 78, 3384-3390.	3.2	14
65	A mild method for synthesizing carboxylic acids by oxidation of aldoximes using hypervalent iodine reagents. Organic and Biomolecular Chemistry, 2018, 16, 541-544.	2.8	13
66	H-D Exchange Reaction Taking Advantage of the Synergistic Effect of Heterogeneous Palladium and Platinum Mixed Catalyst. Synthesis, 2008, 2008, 1467-1478.	2.3	12
67	Effects of Phosphorus Substituents on Reactions of αâ€Alkoxyphosphonium Salts with Nucleophiles. Chemistry - A European Journal, 2012, 18, 11423-11432.	3.3	12
68	An Efficient Deuteration Method Catalyzed by Heterogeneous Platinum Group Metals. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 1179-1190.	0.1	10
69	Iodobenzene Diacetate–Promoted N–N and N–O Bond Formation for Pyrazolo- and Isoxazolopyrimidine Syntheses. Heterocycles, 2009, 79, 669.	0.7	10
70	Direct conversion of acetals to esters with high regioselectivity via O,P-acetals. Organic and Biomolecular Chemistry, 2011, 9, 5648.	2.8	10
71	A Mild and Versatile Method for the Synthesis of Alkyl Ethers from Methoxymethyl Ethers and Application to the Preparation of Sterically Crowded Ethers. Advanced Synthesis and Catalysis, 2012, 354, 1861-1866.	4.3	9
72	An Improved and Practical Method for Synthesizing of α-Sanshools and Spilanthol. Frontiers in Chemistry, 2020, 8, 187.	3.6	9

Tomohiro Maegawa

#	Article	IF	CITATIONS
73	Selective Deprotection of Methylene Acetal and MOM Ether in the Presence of Ketal-Type Protective Groups: Remarkable Effect of TBSOTf. Heterocycles, 2012, 86, 455.	0.7	7
74	A Mild and Facile Method for Complete Hydrogenation of Aromatic Nuclei in Water. Synlett, 2006, 2006, 1440-1442.	1.8	6
75	Pd/C-Catalyzed Direct α-Oxygenation of 1,3-Dicarbonyl Compounds Using Molecular Oxygen. Synlett, 2008, 2291-2294.	1.8	6
76	Bimetallic Palladium-Platinum-on-Carbon-Catalyzed H-D Exchange Reaction: Synergistic Effect on Multiple Deuterium Incorporation. Synthesis, 2009, 2009, 2674-2678.	2.3	6
77	Ligand- and Base-Free Synthesis of 1,3-Diynes Catalyzed by Low Loading of Heterogeneous Pd/C and Cul. Synlett, 2007, 2007, 2521-2524.	1.8	5
78	Versatile and chemoselective synthesis of fluorinated methyl ethers from methoxymethyl ethers. Journal of Fluorine Chemistry, 2017, 201, 1-6.	1.7	4
79	Dehydroxymethyl Bromination of Alkoxybenzyl Alcohols by Using a Hypervalent Iodine Reagent and Lithium Bromide. Synlett, 2018, 29, 2275-2278.	1.8	4
80	Direct Synthesis of Chalcones from Anilides with Phenyl Vinyl Ketones by Oxidative Coupling Through C–H Bond Activation. ACS Omega, 2018, 3, 5375-5381.	3.5	4
81	Reaction via Pyridinium-type Salt Intermediate: Chemoselective Deprotection of Acetals in the Presence of Ketals and Nucleophilic Substitution. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 694-705.	0.1	4
82	Transformation of Methylene Acetals to Bromoformates with a Combination of Trimethyl(phenylthio)silane and <i>N</i> -Bromosuccinimide. Journal of Organic Chemistry, 2017, 82, 7608-7613.	3.2	3
83	Highly Discriminative and Chemoselective Deprotection/Transformations of Acetals with the Combination of Trialkylsilyl Triflate/2,4,6-Collidine. Journal of Organic Chemistry, 2018, 83, 6432-6443.	3.2	3
84	The Reaction of Ketoximes with Hypervalent lodine Reagents: Beckmann Rearrangement and Hydrolysis to Ketones. Synthesis, 0, , .	2.3	3
85	Deprotection of the Carbazole PMB Group Using Hypervalent Iodine Reagent Combined with N-Hydroxyphthalimide. Heterocycles, 2021, 103, 1031.	0.7	2
86	2-Arylquinoline Synthesis from Cbz-Protected 2-Aminochalcone Mediated by BF3•Et2O. Heterocycles, 2017, 95, 608.	0.7	2
87	One-pot Synthetic Approaches for the Construction of Isochroman-4-ones and Benzoxazin-3-ones Using O,P-Acetals. Synthesis, 0, 53, .	2.3	0