Stuart Watkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7937335/publications.pdf

Version: 2024-02-01

218381 189595 2,924 56 26 50 h-index citations g-index papers 61 61 61 3202 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size. Cardiovascular Research, 2022, 118, 1535-1547.	1.8	6
2	A Noncontrast CMR Risk Score for Long-Term Risk Stratification in Reperfused ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Imaging, 2022, 15, 431-440.	2.3	8
3	Clinical outcomes and OCT analysis after culotte stenting with 2nd and 3rd generation Everolimus-eluting stents: Two-year follow-up of the Celtic bifurcation study. Cardiovascular Revascularization Medicine, 2022, , .	0.3	1
4	A multisystem, cardio-renal investigation of post-COVID-19 illness. Nature Medicine, 2022, 28, 1303-1313.	15.2	39
5	Post-stenting fractional flow reserve vs coronary angiography for optimization of percutaneous coronary intervention (TARGET-FFR). European Heart Journal, 2021, 42, 4656-4668.	1.0	79
6	Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction. Circulation: Cardiovascular Interventions, 2021, 14, e009529.	1.4	8
7	Comparative study of costs and resource utilisation of rotational atherectomy versus intravascular lithotripsy for percutaneous coronary intervention. Minerva Cardiology and Angiology, 2021, , .	0.4	3
8	Sex differences in procedural and clinical outcomes following rotational atherectomy. Catheterization and Cardiovascular Interventions, 2020, 95, 232-241.	0.7	24
9	1-Year Outcomes of Angina Management Guided by Invasive Coronary Function Testing (CorMicA). JACC: Cardiovascular Interventions, 2020, 13, 33-45.	1.1	141
10	Redefining Adverse and Reverse Left Ventricular Remodeling by Cardiovascular Magnetic Resonance Following ST-Segment–Elevation Myocardial Infarction and Their Implications on Long-Term Prognosis. Circulation: Cardiovascular Imaging, 2020, 13, e009937.	1.3	24
11	Displacement Encoding With Stimulated Echoes Enables the Identification of Infarct Transmurality Early Postmyocardial Infarction. Journal of Magnetic Resonance Imaging, 2020, 52, 1722-1731.	1.9	3
12	Comparative Significance of Invasive Measures of Microvascular Injury in Acute Myocardial Infarction. Circulation: Cardiovascular Interventions, 2020, 13, e008505.	1.4	37
13	One-Year Outcomes After Low-Dose Intracoronary Alteplase During Primary Percutaneous Coronary Intervention. Circulation: Cardiovascular Interventions, 2020, 13, e008855.	1.4	5
14	Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. European Heart Journal, 2020, 41, 3239-3252.	1.0	73
15	Effects of Intracoronary Alteplase on Microvascular Function in Acute Myocardial Infarction. Journal of the American Heart Association, 2020, 9, e014066.	1.6	11
16	Percutaneous coronary intervention versus medical therapy in patients with angina and grey-zone fractional flow reserve values: a randomised clinical trial. Heart, 2020, 106, 758-764.	1,2	13
17	Low-dose intracoronary alteplase during primary percutaneous coronary intervention in patients with acute myocardial infarction: the T-TIME three-arm RCT. Efficacy and Mechanism Evaluation, 2020, 7, 1-86.	0.9	O
18	Current Smoking and Prognosis AfterÂAcute ST-Segment Elevation MyocardialÂInfarction. JACC: Cardiovascular Imaging, 2019, 12, 993-1003.	2.3	46

#	Article	IF	CITATIONS
19	Predictors of segmental myocardial functional recovery in patients after an acute ST-Elevation myocardial infarction. European Journal of Radiology, 2019, 112, 121-129.	1.2	16
20	Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. Open Heart, 2019, 6, e000979.	0.9	7
21	Diastolic pressure ratio: new approach and validation vs. the instantaneous wave-free ratio. European Heart Journal, 2019, 40, 2585-2594.	1.0	44
22	50 lschaemia and No Obstructive Coronary Artery Disease (INOCA): prevalence and predictors of coronary vasomotion disorders. , 2019, , .		0
23	Ischemia and No Obstructive Coronary Artery Disease. Circulation: Cardiovascular Interventions, 2019, 12, e008126.	1.4	107
24	Circumferential Strain Predicts Major Adverse Cardiovascular Events Following an Acute ST-Segment–Elevation Myocardial Infarction. Radiology, 2019, 290, 329-337.	3.6	32
25	Intravascular lithotripsy to treat a severely underexpanded coronary stent. EuroIntervention, 2019, 15, 124-125.	1.4	29
26	Rationale and design of the British Heart Foundation (BHF) Coronary Microvascular Angina (CorMicA) stratified medicine clinical trial. American Heart Journal, 2018, 201, 86-94.	1.2	22
27	Persistent Iron Within the Infarct CoreÂAfter ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Imaging, 2018, 11, 1248-1256.	2.3	43
28	Rationale and design of the Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) diagnostic study: the CorMicA CMR sub-study. Open Heart, 2018, 5, e000924.	0.9	12
29	Systemic microvascular dysfunction in microvascular and vasospastic angina. European Heart Journal, 2018, 39, 4086-4097.	1.0	139
30	Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina. Journal of the American College of Cardiology, 2018, 72, 2841-2855.	1.2	436
31	Hypertension, Microvascular Pathology, and Prognosis After an Acute Myocardial Infarction. Hypertension, 2018, 72, 720-730.	1.3	33
32	5â€Effect of remote ischaemic preconditioning on coronary artery function in patients with stable coronary artery disease. , 2018, , .		0
33	Validation of the "smart―minimum FFR Algorithm in an unselected all comer population of patients with intermediate coronary stenoses. International Journal of Cardiovascular Imaging, 2017, 33, 991-997.	0.7	3
34	Diagnostic Accuracy of 3.0â€T Magnetic Resonance T1 and T2 Mapping and T2â€Weighted Darkâ€Blood Imaging for the Infarctâ€Related Coronary Artery in Non–STâ€Segment Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	15
35	Persistence of Infarct Zone T2 Hyperintensity at 6 Months After Acute ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	16
36	Comparison of Different Diastolic RestingÂlndexes to iFR. Journal of the American College of Cardiology, 2017, 70, 3088-3096.	1.2	163

3

#	Article	IF	CITATIONS
37	Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction. Hypertension, 2016, 68, 385-391.	1.3	44
38	Discordance Between Resting and Hyperemic Indices of Coronary Stenosis Severity. Circulation: Cardiovascular Interventions, 2016, 9, .	1.4	67
39	Comparative Prognostic Utility of Indexes of Microvascular Function Alone or in Combination in Patients With an Acute ST-Segment–Elevation Myocardial Infarction. Circulation, 2016, 134, 1833-1847.	1.6	135
40	115 Persistence of Infarct Zone Oedema at 6 Months after Acute ST-elevation Myocardial Infarction: Incidence, Pathophysiology and Association with Left Ventricular Remodelling. Heart, 2016, 102, A81.2-A81.	1.2	0
41	114â€Persistence of Haemoglobin Degradation Products within Infarct Scar Tissue after ST-elevation Myocardial Infarction: Incidence, Correlates and Implications for Left Ventricular Remodelling. Heart, 2016, 102, A81.1-A81.	1.2	0
42	2â€Coronary flow reserve and index of microvascular resistance in acute stemi. Heart, 2016, 102, A1.2-A1.	1.2	0
43	Myocardial Hemorrhage After Acute Reperfused ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Imaging, 2016, 9, e004148.	1.3	158
44	Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors. European Heart Journal, 2016, 37, 1044-1059.	1.0	105
45	Safety of guidewire-based measurement of fractional flow reserve and the index of microvascular resistance using intravenous adenosine in patients with acute or recent myocardial infarction. International Journal of Cardiology, 2016, 202, 305-310.	0.8	20
46	Microvascular resistance of the culprit coronary artery in acute ST-elevation myocardial infarction. JCI Insight, 2016, 1, e85768.	2.3	39
47	Fractional flow reserve (FFR) versus angiography in guiding management to optimise outcomes in non-ST segment elevation myocardial infarction (FAMOUS-NSTEMI) developmental trial: cost-effectiveness using a mixed trial- and model-based methods. Cost Effectiveness and Resource Allocation, 2015, 13, 19.	0.6	14
48	Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: recent developments. European Heart Journal, 2015, 36, 3155-3164.	1.0	58
49	Integrated Physiologic Assessment of Ischemic Heart Disease in Real-World Practice Using Index of Microcirculatory Resistance and Fractional Flow Reserve. Circulation: Cardiovascular Interventions, 2015, 8, e002857.	1.4	89
50	Pathophysiology of LV Remodeling inÂSurvivors of STEMI. JACC: Cardiovascular Imaging, 2015, 8, 779-789.	2.3	116
51	Assessment of Fractional Flow Reserve in Patients With Recent Non–ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Interventions, 2015, 8, e002207.	1.4	17
52	Five-year outcomes of staged percutaneous coronary intervention in the SYNTAX study. EuroIntervention, 2015, 10, 1402-1408.	1.4	9
53	79â€Diagnostic Accuracy of Myocardial Fractional Flow Reserve for Reversible Perfusion Abnormalities in Patients with Recent Non-ST Elevation Myocardial Infarction. Heart, 2014, 100, A46-A47.	1.2	2
54	A Randomized Trial of Deferred Stenting Versus Immediate Stenting to Prevent No- or Slow-Reflow in Acute ST-Segment Elevation Myocardial Infarction (DEFER-STEMI). Journal of the American College of Cardiology, 2014, 63, 2088-2098.	1.2	204

#	Article	IF	CITATIONS
55	Relationship between angina pectoris and outcomes in patients with heart failure and reduced ejection fraction: an analysis of the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). European Heart Journal, 2014, 35, 3426-3433.	1.0	18
56	Validation of Magnetic Resonance Myocardial Perfusion Imaging With Fractional Flow Reserve for the Detection of Significant Coronary Heart Disease. Circulation, 2009, 120, 2207-2213.	1.6	191