
Lingli Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7936860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Periostin Facilitates Skin Sclerosis via PI3K/Akt Dependent Mechanism in a Mouse Model of Scleroderma. PLoS ONE, 2012, 7, e41994.	2.5	89
2	Clinical and Histologic Analysis of the Efficacy of Topical Rapamycin Therapy Against Hypomelanotic Macules in Tuberous Sclerosis Complex. JAMA Dermatology, 2015, 151, 722.	4.1	50
3	Dynamic Analysis of Histamine-Mediated Attenuation of Acetylcholine-Induced Sweating via GSK3β Activation. Journal of Investigative Dermatology, 2014, 134, 326-334.	0.7	40
4	6-Shogaol Protects Human Melanocytes against Oxidative Stress through Activation of the Nrf2-Antioxidant Response Element Signaling Pathway. International Journal of Molecular Sciences, 2020, 21, 3537.	4.1	36
5	Local Glucocorticoid Activation by 11β-Hydroxysteroid Dehydrogenase 1 in Keratinocytes. American Journal of Pathology, 2016, 186, 1499-1510.	3.8	28
6	New insight into the role of exosomes in vitiligo. Autoimmunity Reviews, 2020, 19, 102664.	5.8	26
7	A vitamin D analog inhibits Th2 cytokine- and TGFβ -induced periostin production in fibroblasts: a potential role for vitamin D in skin sclerosis. Dermato-Endocrinology, 2015, 7, e1010983.	1.8	23
8	Uncoupling of ER/Mitochondrial Oxidative Stress in mTORC1 Hyperactivation-Associated Skin Hypopigmentation. Journal of Investigative Dermatology, 2018, 138, 669-678.	0.7	22
9	GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Scientific Reports, 2020, 10, 4930.	3.3	21
10	4-(4-Hydroroxyphenyl)-2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes: Insights into the mechanisms of rhododendrol-induced leukoderma. Journal of Dermatological Science, 2015, 77, 182-185.	1.9	20
11	Dysregulation of autophagy in melanocytes contributes to hypopigmented macules in tuberous sclerosis complex. Journal of Dermatological Science, 2018, 89, 155-164.	1.9	17
12	Proteomic identification of heterogeneous nuclear ribonucleoprotein K as a novel cold-associated autoantigen in patients with secondary Raynaud's phenomenon. Rheumatology, 2015, 54, 349-358.	1.9	14
13	Local Epidermal Endocrine Estrogen Protects Human Melanocytes against Oxidative Stress, a Novel Insight into Vitiligo Pathology. International Journal of Molecular Sciences, 2021, 22, 269.	4.1	9
14	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: AÂnovel epilepsy model. PLoS ONE, 2020, 15, e0228204.	2.5	6
15	Vitiligo effectively treated with electrocautery needling technique. Dermatologic Therapy, 2020, 33, e14154.	1.7	4
16	Morphological Alterations and Increased S100B Expression in Epidermal Langerhans Cells Detected in Skin from Patients with Progressive Vitiligo. Life, 2021, 11, 579.	2.4	4
17	Herb Sanqi-Derived Compound K Alleviates Oxidative Stress in Cultured Human Melanocytes and Improves Oxidative-Stress-Related Leukoderma in Guinea Pigs. Cells, 2021, 10, 2057.	4.1	3
18	GPNMB Extracellular Fragment Protects Melanocytes from Oxidative Stress by Inhibiting AKT Phosphorylation Independent of CD44. International Journal of Molecular Sciences, 2021, 22, 10843.	4.1	3

Lingli Yang

#	Article	IF	CITATIONS
19	Electrocautery Needling and the 308-nm Excimer Lamp: A Synergistic Combination for the Treatment of Stable Non-segmental Vitiligo. Dermatology and Therapy, 2020, 10, 695-705.	3.0	3
20	Distribution of hypomelanotic macules in tuberous sclerosis complex: A retrospective cohort study. Journal of the American Academy of Dermatology, 2022, 87, 237-240.	1.2	2
21	A Lower Irradiation Dose of 308 nm Monochromatic Excimer Light Might Be Sufficient for Vitiligo Treatment: A Novel Insight Gained from In Vitro and In Vivo Analyses. International Journal of Molecular Sciences, 2021, 22, 10409.	4.1	1
22	The two faces of mast cells in vitiligo pathogenesis. Exploration of Immunology, 0, , .	0.3	0
23	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		0
24	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		0
25	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		Ο
26	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		0
27	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		Ο
28	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		0
29	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		Ο
30	Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. , 2020, 15, e0228204.		0