
## Sergey V Gnedenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7936060/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers. Corrosion Science, 2012, 55, 238-245.                                    | 6.6  | 148       |
| 2  | PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes. Surface and Coatings Technology, 2010, 204, 2316-2322.                                                       | 4.8  | 145       |
| 3  | Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Applied Surface Science Advances, 2021, 5, 100121.                                                         | 6.8  | 126       |
| 4  | Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge. Surface and Coatings Technology, 2000, 123, 24-28.                                                                                  | 4.8  | 110       |
| 5  | Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies.<br>Corrosion Science, 2016, 102, 269-278.                                                                                       | 6.6  | 100       |
| 6  | Composition and adhesion of protective coatings on aluminum. Surface and Coatings Technology, 2001, 145, 146-151.                                                                                                               | 4.8  | 98        |
| 7  | Protective properties of inhibitor-containing composite coatings on a Mg alloy. Corrosion Science, 2016, 102, 348-354.                                                                                                          | 6.6  | 96        |
| 8  | Recent efforts in design of TiO2(B) anodes for high-rate lithium-ion batteries: A review. Journal of<br>Power Sources, 2019, 442, 227225.                                                                                       | 7.8  | 92        |
| 9  | Composite polymer-containing protective coatings on magnesium alloy MA8. Corrosion Science, 2014, 85, 52-59.                                                                                                                    | 6.6  | 86        |
| 10 | Composite fluoropolymer coatings on the MA8 magnesium alloy surface. Corrosion Science, 2016, 111, 175-185.                                                                                                                     | 6.6  | 69        |
| 11 | Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surface and Coatings Technology, 2018, 334, 29-42.                                                                                            | 4.8  | 69        |
| 12 | PEO-coating/substrate interface investigation by localised electrochemical impedance spectroscopy.<br>Surface and Coatings Technology, 2010, 205, 1697-1701.                                                                    | 4.8  | 65        |
| 13 | Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO<br>pretreated Mg–Mn–Ce magnesium alloy. Surface and Coatings Technology, 2013, 232, 240-246.                                      | 4.8  | 63        |
| 14 | Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles. Journal of Materials Science and Technology, 2017, 33, 461-468.                                                          | 10.7 | 63        |
| 15 | Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles. Applied Surface Science, 2020, 503, 144062.                                                                                                             | 6.1  | 61        |
| 16 | Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a<br>plasma electrolytic oxidation-based route. Journal of the Taiwan Institute of Chemical Engineers, 2014,<br>45, 3104-3109. | 5.3  | 56        |
| 17 | Smart composite antibacterial coatings with active corrosion protection of magnesium alloys.<br>Journal of Magnesium and Alloys, 2022, 10, 3589-3611.                                                                           | 11.9 | 52        |
| 18 | Wetting and electrochemical properties of hydrophobic and superhydrophobic coatings on titanium.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 383, 61-66.                                         | 4.7  | 49        |

SERGEY V GNEDENKOV

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8.<br>Vacuum, 2015, 120, 107-114.                                                             | 3.5  | 47        |
| 20 | Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium. Corrosion Science, 2020, 170, 108689.                                          | 6.6  | 47        |
| 21 | Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science, 2021, 182, 109254.                                                                      | 6.6  | 46        |
| 22 | Composite coatings formed on Ti by PEO and fluoropolymer treatment. Applied Surface Science, 2021, 536, 147976.                                                                            | 6.1  | 45        |
| 23 | Composite fluoropolymer coatings on Mg alloys formed by plasma electrolytic oxidation in combination with electrophoretic deposition. Surface and Coatings Technology, 2015, 283, 347-352. | 4.8  | 42        |
| 24 | Magnesium fabricated using additive technology: Specificity of corrosion and protection. Journal of Alloys and Compounds, 2019, 808, 151629.                                               | 5.5  | 40        |
| 25 | The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions.<br>Journal of Magnesium and Alloys, 2022, 10, 1326-1350.                                    | 11.9 | 40        |
| 26 | Wettability and electrochemical properties of the highly hydrophobic coatings on PEO-pretreated aluminum alloy. Surface and Coatings Technology, 2016, 307, 1241-1248.                     | 4.8  | 39        |
| 27 | Features of the corrosion processes development at the magnesium alloys surface. Surface and Coatings Technology, 2013, 225, 112-118.                                                      | 4.8  | 38        |
| 28 | Mg alloy treatment for superhydrophobic anticorrosion coating formation. Surface Innovations, 2013, 1, 162-172.                                                                            | 2.3  | 38        |
| 29 | Electrochemical properties of the superhydrophobic coatings on metals and alloys. Journal of the<br>Taiwan Institute of Chemical Engineers, 2014, 45, 3075-3080.                           | 5.3  | 36        |
| 30 | Protective Composite Coatings Formed on Mg Alloy Surface by PEO Using Organofluorine Materials.<br>Journal of Materials Science and Technology, 2017, 33, 661-667.                         | 10.7 | 36        |
| 31 | Bioactive Coatings Formed on Titanium by Plasma Electrolytic Oxidation: Composition and Properties.<br>Materials, 2020, 13, 4121.                                                          | 2.9  | 34        |
| 32 | Composite coatings formed using plasma electrolytic oxidation and fluoroparaffin materials. Journal of Alloys and Compounds, 2018, 767, 353-360.                                           | 5.5  | 32        |
| 33 | Atmospheric and Marine Corrosion of PEO and Composite Coatings Obtained on Al-Cu-Mg Aluminum<br>Alloy. Materials, 2020, 13, 2739.                                                          | 2.9  | 30        |
| 34 | Electrochemical behaviour of the MA8 Mg alloy in minimum essential medium. Corrosion Science, 2020, 168, 108552.                                                                           | 6.6  | 30        |
| 35 | Plasma Electrolytic Oxidation Coatings on Titanium Formed with Microsecond Current Pulses. Solid<br>State Phenomena, 2014, 213, 149-153.                                                   | 0.3  | 29        |
| 36 | Hydrolysis lignin: Electrochemical properties of the organic cathode material for primary lithium<br>battery. Journal of Industrial and Engineering Chemistry, 2014, 20, 903-910.          | 5.8  | 28        |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural and electrochemical investigation of nanostructured C:TiO2–TiOF2 composite synthesized in plasma by an original method of pulsed high-voltage discharge. Journal of Alloys and Compounds, 2015, 621, 364-370.                             | 5.5  | 28        |
| 38 | Electrochemical performance of Klason lignin as a low-cost cathode-active material for primary lithium battery. Journal of Energy Chemistry, 2015, 24, 346-352.                                                                                      | 12.9 | 26        |
| 39 | Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy. Materials, 2019, 12, 2615.                                                                                                                                            | 2.9  | 26        |
| 40 | Inhibitor-Containing Composite Coatings on Mg Alloys: Corrosion Mechanism and Self-Healing<br>Protection. Solid State Phenomena, 0, 245, 89-96.                                                                                                      | 0.3  | 25        |
| 41 | Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes<br>Synthesized by Sol–Gel Template Route. Journal of Materials Science and Technology, 2017, 33, 527-534.                                              | 10.7 | 25        |
| 42 | Effect of Hf-doping on electrochemical performance of anatase TiO <sub>2</sub> as an anode material for lithium storage. Royal Society Open Science, 2018, 5, 171811.                                                                                | 2.4  | 25        |
| 43 | Enhancing Lithium and Sodium Storage Properties of TiO2(B) Nanobelts by Doping with Nickel and Zinc. Nanomaterials, 2021, 11, 1703.                                                                                                                  | 4.1  | 23        |
| 44 | Microscale morphology and properties of the PEO-coating surface. Physics Procedia, 2012, 23, 98-101.                                                                                                                                                 | 1.2  | 22        |
| 45 | Features of the Magnesium Alloys Corrosion in the Chloride-Containing Media. Solid State Phenomena, 0, 213, 143-148.                                                                                                                                 | 0.3  | 22        |
| 46 | Icephobic Performance of Combined Fluorine-Containing Composite Layers on Al-Mg-Mn–Si Alloy<br>Surface. Polymers, 2021, 13, 3827.                                                                                                                    | 4.5  | 19        |
| 47 | Fluorine substituted molybdenum oxide as cathode material for Li-ion battery. Materials Letters, 2015, 160, 175-178.                                                                                                                                 | 2.6  | 18        |
| 48 | Green synthesis of silver nanoparticles using transgenic <i>Nicotiana tabacum</i> callus culture<br>expressing silicatein gene from marine sponge <i>Latrunculia oparinae</i> . Artificial Cells,<br>Nanomedicine and Biotechnology, 2018, 46, 1-13. | 2.8  | 17        |
| 49 | Enhancing the reversible capacity of nanostructured TiO 2 (anatase) by Zr-doping using a sol–gel<br>template method. Scripta Materialia, 2015, 107, 136-139.                                                                                         | 5.2  | 14        |
| 50 | Effect of PEO-modes on the electrochemical and mechanical properties of coatings on MA8 magnesium alloy. Physics Procedia, 2012, 23, 90-93.                                                                                                          | 1.2  | 11        |
| 51 | Electrochemistry of Klason Lignin. Procedia Chemistry, 2014, 11, 96-100.                                                                                                                                                                             | 0.7  | 11        |
| 52 | Incorporation of Zirconia and Silica Nanoparticles into PEO-Coatings on Magnesium Alloys. Solid<br>State Phenomena, 2014, 213, 125-130.                                                                                                              | 0.3  | 11        |
| 53 | Fluorocarbon materials produced by the thermo destruction of polytetrafluoroethylene and possibility of theirs application in Li/(CFx)n batteries. Physics Procedia, 2012, 23, 86-89.                                                                | 1.2  | 9         |
| 54 | In vivo study of osteogenerating properties of calcium-phosphate coating on titanium alloy<br>Ti–6Al–4V. Bio-Medical Materials and Engineering, 2017, 27, 551-560.                                                                                   | 0.6  | 9         |

SERGEY V GNEDENKOV

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Protective Properties of the Nanocomposite Coatings on Mg Alloy. Solid State Phenomena, 2014, 213, 176-179.                                                                                                           | 0.3 | 8         |
| 56 | Fabrication of Battery Cathode Material Based on Hydrolytic Lignin. Solid State Phenomena, 0, 213, 154-159.                                                                                                           | 0.3 | 7         |
| 57 | Nanostructured microtubes based on TiO <sub>2</sub> doped by Zr and Hf oxides with the anatase structure. IOP Conference Series: Materials Science and Engineering, 2016, 112, 012016.                                | 0.6 | 7         |
| 58 | Comparison of superionic phases for some fluorine conducting materials. Physics Procedia, 2012, 23, 94-97.                                                                                                            | 1.2 | 4         |
| 59 | Fluoropolymer-containing layer formed on MA8 magnesium alloy. Materials Today: Proceedings, 2019, 19, 1887-1890.                                                                                                      | 1.8 | 4         |
| 60 | Incorporation of Composite Zirconia-Silica Nanoparticles into PEO-Coatings on Magnesium Alloys.<br>Defect and Diffusion Forum, 0, 386, 321-325.                                                                       | 0.4 | 3         |
| 61 | Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis,<br>Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries. Nanomaterials,<br>2022, 12, 1905. | 4.1 | 3         |
| 62 | Composite Calcium Phosphate Coatings on Mg Alloy for Medicine. Solid State Phenomena, 2015, 245, 159-165.                                                                                                             | 0.3 | 2         |
| 63 | Mechanical properties of PEO-coatings on the surface of magnesium alloy MA8 modified by TiN nanoparticles. AIP Conference Proceedings, 2017, , .                                                                      | 0.4 | 2         |
| 64 | Protective Coatings for the Elements of Ships Power Plants which Use Sea Water. Journal of<br>Advanced Marine Engineering and Technology, 2012, 36, 341-350.                                                          | 0.4 | 2         |
| 65 | Manganese-Doped Titanium Dioxide with Improved Electrochemical Performance for Lithium-Ion<br>Batteries. Electrochemical Energetics, 2019, 19, 123-140.                                                               | 0.2 | 2         |
| 66 | Incorporation of TiO <sub>2</sub> (B) Nanoparticles into PEO Coatings on MA8 Magnesium<br>Alloy. Solid State Phenomena, 0, 312, 372-376.                                                                              | 0.3 | 2         |
| 67 | Electrochemical properties of functional hybrid coatings on titanium. Physics Procedia, 2012, 23, 106-109.                                                                                                            | 1.2 | 1         |
| 68 | Facile Synthesis of <i>α</i> - Fe <sub>2</sub> O <sub>3</sub> /Carbon<br>Core-Shell Composite for Lithium Storage and Conversion. Defect and Diffusion Forum, 0, 386, 301-304.                                        | 0.4 | 1         |
| 69 | Formation of Protective Coatings on AMg3 Aluminum Alloy Using Fluoropolymer Nanopowder. Solid<br>State Phenomena, 0, 312, 330-334.                                                                                    | 0.3 | 1         |
| 70 | Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries. AIP<br>Conference Proceedings, 2017, , .                                                                               | 0.4 | 0         |
| 71 | Responses of Dendritic Cells to Different Coatings of Titanium. Springer Proceedings in Physics, 2017, ,<br>165-174.                                                                                                  | 0.2 | 0         |
| 72 | Vanadium-Doped Bronze Titanium Dioxide as Anode Material for Lithium-ion Batteries with Enchanced<br>Cycleability and Rate Performance. Electrochemical Energetics, 2020, 20, 3-19.                                   | 0.2 | 0         |

SERGEY V GNEDENKOV

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | PEO Coated Porous Mg/HAp Implant Materials Impregnated with Bioactive Components. Solid State Phenomena, 0, 312, 366-371.                                   | 0.3 | Ο         |
| 74 | Hybrid polymer-containing coatings, impregnated with a corrosion inhibitor, formed for protection of biodegradable magnesium alloys. , 2021, , 56-64.       | 0.1 | 0         |
| 75 | Anticorrosive bioactive coatings with synthetic nanosized hydroxyapatite prepared on magnesium. , 2021, , 43-55.                                            | 0.1 | Ο         |
| 76 | Electrode materials with improved characteristics for lithium and sodium electrochemical power sources: progress and prospects (A review). , 2021, , 65-78. | 0.1 | 0         |
| 77 | Composite coatings obtained by the PEO-method followed by the deposition of a polymer from an aqueous suspension of UTPFE. , 2021, , 5-21.                  | 0.1 | Ο         |
| 78 | Localized Corrosion Degradation of Bioresorbable Mg Alloys Promising for Medicine. , 2021, 6, .                                                             |     | 0         |