Xiaojing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935289/publications.pdf

Version: 2024-02-01

		430874	454955
30	1,715	18	30
papers	citations	h-index	g-index
30	30	30	2300
all docs	docs citations	times ranked	citing authors
			J

#	Article	IF	CITATIONS
1	Latest generation estrogen receptor degraders for the treatment of hormone receptor-positive breast cancer. Expert Opinion on Investigational Drugs, 2022, 31, 515-529.	4.1	39
2	Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nature Communications, 2022, 13, 2057.	12.8	12
3	GDC-9545 (Giredestrant): A Potent and Orally Bioavailable Selective Estrogen Receptor Antagonist and Degrader with an Exceptional Preclinical Profile for ER+ Breast Cancer. Journal of Medicinal Chemistry, 2021, 64, 11841-11856.	6.4	70
4	Discovery of GNE-502 as an orally bioavailable and potent degrader for estrogen receptor positive breast cancer. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128335.	2.2	7
5	Human Cytochrome P450 1A1 Adapts Active Site for Atypical Nonplanar Substrate. Drug Metabolism and Disposition, 2020, 48, 86-92.	3.3	17
6	Stereochemical Differences in Fluorocyclopropyl Amides Enable Tuning of Btk Inhibition and Off-Target Activity. ACS Medicinal Chemistry Letters, 2020, 11, 1588-1597.	2.8	12
7	The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells. Science Signaling, 2020, 13, .	3.6	22
8	Discovery of GNE-149 as a Full Antagonist and Efficient Degrader of Estrogen Receptor alpha for ER+ Breast Cancer. ACS Medicinal Chemistry Letters, 2020, 11, 1342-1347.	2.8	17
9	Strategies to Mitigate the Bioactivation of Aryl Amines. Chemical Research in Toxicology, 2020, 33, 1950-1959.	3.3	10
10	Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell, 2019, 178, 949-963.e18.	28.9	131
11	Discovery of a C-8 hydroxychromene as a potent degrader of estrogen receptor alpha with improved rat oral exposure over GDC-0927. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2090-2093.	2.2	13
12	Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma. Journal of Medicinal Chemistry, 2019, 62, 2140-2153.	6.4	29
13	From Discovery to Bedside: Targeting the Ubiquitin System. Cell Chemical Biology, 2019, 26, 156-177.	5. 2	113
14	Unexpected equivalent potency of a constrained chromene enantiomeric pair rationalized by co-crystal structures in complex with estrogen receptor alpha. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 905-911.	2.2	12
15	Discovery of GDC-0853: A Potent, Selective, and Noncovalent Bruton's Tyrosine Kinase Inhibitor in Early Clinical Development. Journal of Medicinal Chemistry, 2018, 61, 2227-2245.	6.4	177
16	Characterizing the <i>in vitro</i> species differences in N-glucuronidation of a potent pan-PIM inhibitor GNE-924 containing a 3,5-substituted 6-azaindazole. Xenobiotica, 2018, 48, 1021-1027.	1.1	1
17	Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL. Blood, 2018, 132, 1039-1049.	1.4	51
18	Discovery of Potent and Selective Tricyclic Inhibitors of Bruton's Tyrosine Kinase with Improved Druglike Properties. ACS Medicinal Chemistry Letters, 2017, 8, 608-613.	2.8	26

#	Article	IF	CITATION
19	Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability. Journal of Medicinal Chemistry, 2017, 60, 4458-4473.	6.4	18
20	Bruton's Tyrosine Kinase Small Molecule Inhibitors Induce a Distinct Pancreatic Toxicity in Rats. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 226-238.	2.5	19
21	USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550, 534-538.	27.8	258
22	CYP1A1-Mediated Intramolecular Rearrangement of Aminoazepane in GDC-0339. Drug Metabolism and Disposition, 2017, 45, 1084-1092.	3.3	7
23	Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell–associated damage in IFNα-driven lupus nephritis. JCI Insight, 2017, 2, e90111.	5.0	65
24	Battling Btk Mutants With Noncovalent Inhibitors That Overcome Cys481 and Thr474 Mutations. ACS Chemical Biology, 2016, $11,2897-2907$.	3.4	111
25	Discovery of highly potent and selective Bruton's tyrosine kinase inhibitors: Pyridazinone analogs with improved metabolic stability. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 575-579.	2.2	34
26	Potent and selective Bruton's tyrosine kinase inhibitors: Discovery of GDC-0834. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1333-1337.	2,2	55
27	Probing Mechanisms of CYP3A Time-Dependent Inhibition Using a Truncated Model System. ACS Medicinal Chemistry Letters, 2015, 6, 925-929.	2.8	12
28	Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5258-5264.	2.2	20
29	Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3149-3153.	2.2	55
30	Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis. Nature Chemical Biology, 2011, 7, 41-50.	8.0	302