Gabriella D'Arcangelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mRNA-Decapping Associated DcpS Enzyme Controls Critical Steps of Neuronal Development. Cerebral Cortex, 2022, 32, 1494-1507.	1.6	2
2	The structure-function relationship of a signaling-competent, dimeric Reelin fragment. Structure, 2021, 29, 1156-1170.e6.	1.6	6
3	Enhanced phosphorylation of S6 protein in mouse cortical layer V and subplate neurons NeuroReport, 2020, 31, 762-769.	0.6	0
4	Reduced Reelin Expression in the Hippocampus after Traumatic Brain Injury. Biomolecules, 2020, 10, 975.	1.8	8
5	Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Molecular and Cellular Neurosciences, 2018, 92, 149-163.	1.0	36
6	Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders. Neuroscience, 2017, 354, 196-207.	1.1	16
7	Role of Akt-independent mTORC1 and GSK3Î ² signaling in sublethal NMDA-induced injury and the recovery of neuronal electrophysiology and survival. Scientific Reports, 2017, 7, 1539.	1.6	24
8	New Insights into Reelin-Mediated Signaling Pathways. Frontiers in Cellular Neuroscience, 2016, 10, 122.	1.8	131
9	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	1.0	43
10	Beneficial Effects of Early mTORC1 Inhibition after Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 183-193.	1.7	24
11	Editorial: Reelin-Related Neurological Disorders and Animal Models. Frontiers in Cellular Neuroscience, 2016, 10, 299.	1.8	2
12	mTOR inhibition suppresses established epilepsy in a mouse model of cortical dysplasia. Epilepsia, 2015, 56, 636-646.	2.6	82
13	Complex Neurological Phenotype in Mutant Mice Lacking <i>Tsc2</i> in Excitatory Neurons of the Developing Forebrain. ENeuro, 2015, 2, ENEURO.0046-15.2015.	0.9	24
14	Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. Advances in Neuroscience (Hindawi), 2014, 2014, 1-19.	3.1	74
15	Reelin Induces Erk1/2 Signaling in Cortical Neurons Through a Non-canonical Pathway. Journal of Biological Chemistry, 2014, 289, 20307-20317.	1.6	49
16	Reelin supplementation recovers sensorimotor gating, synaptic plasticity and associative learning deficits in the heterozygous reeler mouse. Journal of Psychopharmacology, 2013, 27, 386-395.	2.0	77
17	Dab1 Is Required for Synaptic Plasticity and Associative Learning. Journal of Neuroscience, 2013, 33, 15652-15668.	1.7	77
18	Development and Characterization of NEX- <i>Pten,</i> a Novel Forebrain Excitatory Neuron-Specific Knockout Mouse. Developmental Neuroscience, 2012, 34, 198-209.	1.0	34

GABRIELLA D'ARCANGELO

#	Article	IF	CITATIONS
19	Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discovery Today, 2012, 17, 861-868.	3.2	59
20	Dab2ip Regulates Neuronal Migration and Neurite Outgrowth in the Developing Neocortex. PLoS ONE, 2012, 7, e46592.	1.1	20
21	Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia, 2011, 52, 2065-2075.	2.6	99
22	Dyrk1A Overexpression Inhibits Proliferation and Induces Premature Neuronal Differentiation of Neurol Progenitor Cells. Journal of Neuroscience, 2010, 30, 4004-4014.	1.7	132
23	Cdk5 Suppresses the Neuronal Cell Cycle by Disrupting the E2F1–DP1 Complex. Journal of Neuroscience, 2010, 30, 5219-5228.	1.7	100
24	Rapamycin treatment suppresses epileptogenic activity in conditionalPtenknockout mice. Cell Cycle, 2010, 9, 2487-2488.	1.3	7
25	Differential interaction of the Pafah1b alpha subunits with the Reelin transducer Dab1. Brain Research, 2009, 1267, 1-8.	1.1	20
26	From human tissue to animal models: Insights into the pathogenesis of cortical dysplasia. Epilepsia, 2009, 50, 28-33.	2.6	19
27	Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. DMM Disease Models and Mechanisms, 2009, 2, 389-398.	1.2	162
28	Pafah1b2 mutations suppress the development of hydrocephalus in compound Pafah1b1; Reln and Pafah1b1; Dab1 mutant mice. Neuroscience Letters, 2008, 439, 100-105.	1.0	17
29	The Reelin Signaling Pathway Promotes Dendritic Spine Development in Hippocampal Neurons. Journal of Neuroscience, 2008, 28, 10339-10348.	1.7	246
30	The Pafah1b Complex Interacts with the Reelin Receptor VLDLR. PLoS ONE, 2007, 2, e252.	1.1	57
31	Abnormal laminar position and dendrite development of interneurons in the reeler forebrain. Brain Research, 2007, 1140, 75-83.	1.1	58
32	Reelin mouse mutants as models of cortical development disorders. Epilepsy and Behavior, 2006, 8, 81-90.	0.9	106
33	Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Annals of Neurology, 2006, 60, 420-429.	2.8	135
34	The Reeler Mouse: Anatomy of a Mutant. International Review of Neurobiology, 2005, 71, 383-417.	0.9	60
35	Apoer2: A Reelin Receptor to Remember. Neuron, 2005, 47, 471-473.	3.8	58
36	Reelin Promotes Hippocampal Dendrite Development through the VLDLR/ApoER2-Dab1 Pathway. Neuron, 2004, 41, 71-84.	3.8	331

Gabriella D'Arcangelo

#	Article	IF	CITATIONS
37	Interaction of reelin signaling and Lis1 in brain development. Nature Genetics, 2003, 35, 270-276.	9.4	199
38	Reelin Promotes Peripheral Synapse Elimination and Maturation. Science, 2003, 301, 649-653.	6.0	30
39	Reelin and Disabled-1 Expression in Developing and Mature Human Cortical Neurons. Journal of Neuropathology and Experimental Neurology, 2003, 62, 676-684.	0.9	51
40	Reelin Is a Serine Protease of the Extracellular Matrix. Journal of Biological Chemistry, 2002, 277, 303-309.	1.6	137
41	Reelin mRNA expression during embryonic brain development in the chick. Journal of Comparative Neurology, 2000, 422, 448-463.	0.9	57
42	Reelin Is a Ligand for Lipoprotein Receptors. Neuron, 1999, 24, 471-479.	3.8	744
43	Reeler: new tales on an old mutant mouse. BioEssays, 1998, 20, 235-244.	1.2	131
44	Role of reelin in the control of brain development1Published on the World Wide Web on 21 October 1997.1. Brain Research Reviews, 1998, 26, 285-294.	9.1	250
45	Reeler: new tales on an old mutant mouse. BioEssays, 1998, 20, 235-244.	1.2	2
46	Genomic Organization of the MouseReelinGene. Genomics, 1997, 46, 240-250.	1.3	73
47	Scrambler and yotari disrupt the disabled gene and produce a reeler -like phenotype in mice. Nature, 1997, 389, 730-733.	13.7	604
48	Detection of the reelin breakpoint in reeler mice. Molecular Brain Research, 1996, 39, 234-236.	2.5	86
49	Reeler gene discrepancies. Nature Genetics, 1995, 11, 12-12.	9.4	3
50	A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature, 1995, 374, 719-723.	13.7	1,615
51	Stimulation ofvgfgene expression by NGF is mediated through multiple signal transduction pathways involving protein phosphorylation. FEBS Letters, 1995, 360, 106-110.	1.3	14
52	Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell, 1992, 68, 1031-1040.	13.5	728
53	Uncoupling of mitochondrial oxidative phosphorylation by hexetidine. Biochemical and Biophysical Research Communications, 1987, 147, 801-808.	1.0	12