Sai Wah Tsao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935030/publications.pdf

Version: 2024-02-01

59 papers

3,230 citations

126858 33 h-index 55 g-index

61 all docs

61 docs citations

61 times ranked

4287 citing authors

#	Article	IF	CITATIONS
1	Longitudinal evaluation of five nasopharyngeal carcinoma animal models on the microPET/MR platform. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1497-1507.	3.3	1
2	Exosomes derived from $\hat{1}^3\hat{1}'$ -T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment., 2022, 10, e003832.		24
3	The microdissected gene expression landscape of nasopharyngeal cancer reveals vulnerabilities in FGF and noncanonical NF-κB signaling. Science Advances, 2022, 8, eabh2445.	4.7	10
4	Somatostatin receptor 2 expression in nasopharyngeal cancer is induced by Epstein Barr virus infection: impact on prognosis, imaging and therapy. Nature Communications, 2021, 12, 117.	5.8	34
5	Significance of serglycin and its binding partners in autocrine promotion of metastasis in esophageal cancer. Theranostics, 2021, 11, 2722-2741.	4.6	10
6	FBX4 mediates rapid cyclin D1 proteolysis upon DNA damage in immortalized esophageal epithelial cells. Biochemical and Biophysical Research Communications, 2021, 554, 76-82.	1.0	4
7	A three-dimensional spheroid-specific role for Wnt–β-catenin and Eph–ephrin signaling in nasopharyngeal carcinoma cells. Journal of Cell Science, 2021, 134, .	1.2	3
8	\hat{l} "Np63 \hat{l} ± promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathogens, 2021, 17, e1010045.	2.1	8
9	Therapeutic evaluation of palbociclib and its compatibility with other chemotherapies for primary and recurrent nasopharyngeal carcinoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 262.	3.5	13
10	Direct inhibition of the TLR4/MyD88 pathway by geniposide suppresses HIFâ€1αâ€independent VEGF expression and angiogenesis in hepatocellular carcinoma. British Journal of Pharmacology, 2020, 177, 3240-3257.	2.7	55
11	Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Scientific Reports, 2020, 10, 6115.	1.6	10
12	The anti-tumor function of the IKK inhibitor PS1145 and high levels of p65 and KLF4 are associated with the drug resistance in nasopharyngeal carcinoma cells. Scientific Reports, 2019, 9, 12064.	1.6	11
13	Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation. Journal of Virology, 2019, 93, .	1.5	4
14	<i>CHL1</i> suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin \hat{I}^21 and Merlin. International Journal of Biological Sciences, 2019, 15, 1802-1815.	2.6	18
15	Epstein–Barr virus ncRNA from a nasopharyngeal carcinoma induces an inflammatory response that promotes virus production. Nature Microbiology, 2019, 4, 2475-2486.	5.9	33
16	Identification of miR-29c and its Target FBXO31 as a Key Regulatory Mechanism in Esophageal Cancer Chemoresistance: Functional Validation and Clinical Significance. Theranostics, 2019, 9, 1599-1613.	4.6	46
17	mTORC2-mediated PDHE1 \hat{i} ± nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene, 2019, 38, 4669-4684.	2.6	40
18	Autophagy-Dependent Reactivation of Epstein-Barr Virus Lytic Cycle and Combinatorial Effects of Autophagy-Dependent and Independent Lytic Inducers in Nasopharyngeal Carcinoma. Cancers, 2019, 11, 1871.	1.7	9

#	Article	IF	CITATIONS
19	High risk Epsteinâ€Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. International Journal of Cancer, 2019, 144, 3031-3042.	2.3	50
20	MicroRNAâ€338â€5p reverses chemoresistance and inhibits invasion of esophageal squamous cell carcinoma cells by targeting Idâ€1. Cancer Science, 2019, 110, 3677-3688.	1.7	38
21	IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Letters, 2018, 425, 88-100.	3.2	29
22	Overexpression of Fâ€box only protein 31 predicts poor prognosis and deregulates p38α―and JNK―mediated apoptosis in esophageal squamous cell carcinoma. International Journal of Cancer, 2018, 142, 145-155.	2.3	15
23	Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nature Communications, 2018, 9, 4663.	5.8	106
24	EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathogens, 2018, 14, e1007484.	2.1	67
25	Establishment of a nasopharyngeal carcinoma cell line capable of undergoing lytic Epstein–Barr virus reactivation. Laboratory Investigation, 2018, 98, 1093-1104.	1.7	45
26	Oncogenic <scp>S1P</scp> signalling in <scp>EBV</scp> â€associated nasopharyngeal carcinoma activates <scp>AKT</scp> and promotes cell migration through <scp>S1P</scp> receptor 3. Journal of Pathology, 2017, 242, 62-72.	2.1	33
27	Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nature Communications, 2017, 8, 14399.	5.8	70
28	Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. Journal of Virology, 2017, 91, .	1.5	6
29	Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Upregulates Glucose Transporter 1 Transcription via the mTORC1/NF-κB Signaling Pathways. Journal of Virology, 2017, 91, .	1.5	71
30	EBV Infection and Glucose Metabolism in Nasopharyngeal Carcinoma. Advances in Experimental Medicine and Biology, 2017, 1018, 75-90.	0.8	39
31	Epstein–Barr virus infection and nasopharyngeal carcinoma. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160270.	1.8	380
32	Epstein–Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle. Viruses, 2017, 9, 341.	1.5	41
33	Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget, 2017, 8, 38755-38766.	0.8	83
34	Neuropilin-2 promotes tumourigenicity and metastasis in oesophageal squamous cell carcinoma through ERK-MAPK-ETV4-MMP-E-cadherin deregulation. Journal of Pathology, 2016, 239, 309-319.	2.1	51
35	Significance of <scp>NFâ€PB</scp> activation in immortalization of nasopharyngeal epithelial cells. International Journal of Cancer, 2016, 138, 1175-1185.	2.3	37
36	Role of AMPK signaling in mediating the anticancer effects of silibinin in esophageal squamous cell carcinoma. Expert Opinion on Therapeutic Targets, 2016, 20, 7-18.	1.5	19

3

#	Article	IF	CITATIONS
37	Competitive Binding Between Id1 and E2F1 to Cdc20 Regulates E2F1 Degradation and Thymidylate Synthase Expression to Promote Esophageal Cancer Chemoresistance. Clinical Cancer Research, 2016, 22, 1243-1255.	3.2	55
38	Extremely stringent activation of p16INK4a prevents immortalization of uterine cervical epithelial cells without human papillomavirus oncogene expression. Oncotarget, 2016, 7, 45656-45670.	0.8	0
39	Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nature Communications, 2015, 6, 6240.	5.8	144
40	Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 541-551.	1.8	82
41	TP53-induced glycolysis and apoptosis regulator promotes proliferation and invasiveness of nasopharyngeal carcinoma cells. Oncology Letters, 2015, 9, 569-574.	0.8	26
42	Role of ATM in the Formation of the Replication Compartment during Lytic Replication of Epstein-Barr Virus in Nasopharyngeal Epithelial Cells. Journal of Virology, 2015, 89, 652-668.	1.5	43
43	Nonmuscle myosin heavy chain IIA mediates Epstein–Barr virus infection of nasopharyngeal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11036-11041.	3.3	70
44	CRISPR/Cas9-mediated genome editing of Epstein–Barr virus in human cells. Journal of General Virology, 2015, 96, 626-636.	1.3	155
45	Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy. Oncotarget, 2015, 6, 1790-1805.	0.8	57
46	F-Box Only Protein 31 (FBXO31) Negatively Regulates p38 Mitogen-activated Protein Kinase (MAPK) Signaling by Mediating Lysine 48-linked Ubiquitination and Degradation of Mitogen-activated Protein Kinase Kinase 6 (MKK6). Journal of Biological Chemistry, 2014, 289, 21508-21518.	1.6	40
47	Etiological factors of nasopharyngeal carcinoma. Oral Oncology, 2014, 50, 330-338.	0.8	206
48	Id1-Induced IGF-II and Its Autocrine/Endocrine Promotion of Esophageal Cancer Progression and Chemoresistanceâ€"Implications for IGF-II and IGF-IRâ€"Targeted Therapy. Clinical Cancer Research, 2014, 20, 2651-2662.	3.2	71
49	Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget, 2014, 5, 11576-11587.	0.8	67
50	Perturbation of biogenesis and targeting of Epstein–Barr virus-encoded miR-BART3 microRNA by adenosine-to-inosine editing. Journal of General Virology, 2013, 94, 2739-2744.	1.3	22
51	Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study. PLoS ONE, 2013, 8, e78395.	1.1	28
52	Identification of PTK6, via RNA Sequencing Analysis, as a Suppressor of Esophageal Squamous Cell Carcinoma. Gastroenterology, 2012, 143, 675-686.e12.	0.6	68
53	The biology of EBV infection in human epithelial cells. Seminars in Cancer Biology, 2012, 22, 137-143.	4.3	99
54	Characterization of a novel epigeneticallyâ€silenced, growthâ€suppressive gene, <i>ADAMTS9</i> , and its association with lymph node metastases in nasopharyngeal carcinoma. International Journal of Cancer, 2008, 123, 401-408.	2.3	65

SAI WAH TSAO

#	Article	IF	CITATIONS
55	The ubiquitination of p53 regulated by epstein-barr virus encoded latent membrane protein 1. Cell Biology International, 2008, 32, S31-S31.	1.4	O
56	A novel anticancer effect of garlic derivatives: inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis, 2007, 28, 232-232.	1.3	0
57	A new method for improving metaphase chromosome spreading. Cytometry, 2003, 51A, 46-51.	1.8	79
58	Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1590, 150-158.	1.9	168
59	The significance of LMP1 expression in nasopharyngeal carcinoma. Seminars in Cancer Biology, 2002, 12, 473-487.	4.3	172