Sanliang Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935000/publications.pdf Version: 2024-02-01

SANLIANC LINC

#	Article	IF	CITATIONS
1	Supramolecular Proton Conductors Self-Assembled by Organic Cages. Jacs Au, 2022, 2, 819-826.	3.6	17
2	Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework. Chemical Science, 2022, 13, 6291-6296.	3.7	2
3	Controlling the Flexibility of MILâ€88A(Sc) Through Synthetic Optimisation and Postsynthetic Halogenation. Chemistry - A European Journal, 2022, 28, .	1.7	8
4	Hexaphenylbenzeneâ€Based Deep Blueâ€Emissive Metallacages as Donors for Lightâ€Harvesting Systems. Angewandte Chemie, 2022, 134, .	1.6	4
5	Hexaphenylbenzeneâ€Based Deep Blueâ€Emissive Metallacages as Donors for Lightâ€Harvesting Systems. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
6	Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Progress in Energy, 2022, 4, 032007.	4.6	29
7	Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability. Chemistry of Materials, 2021, 33, 4067-4076.	3.2	33
8	Tetraphenylethyleneâ€Based Multicomponent Emissive Metallacages as Solidâ€State Fluorescent Materials. Angewandte Chemie, 2021, 133, 12401-12405.	1.6	27
9	Tetraphenylethyleneâ€Based Multicomponent Emissive Metallacages as Solidâ€5tate Fluorescent Materials. Angewandte Chemie - International Edition, 2021, 60, 12293-12297.	7.2	83
10	A combined experimental and computational study of the Cu/C (sp2) interface. Carbon Trends, 2021, 4, 100046.	1.4	2
11	Controlling multiple orderings in metal thiocyanate molecular perovskites A _{<i>x</i>} {Ni[Bi(SCN) ₆]}. Chemical Science, 2021, 12, 3516-3525.	3.7	5
12	Exploring and expanding the Fe-terephthalate metal–organic framework phase space by coordination and oxidation modulation. Materials Horizons, 2021, 8, 3377-3386.	6.4	25
13	A high-throughput, solvent free method for dispersing metal atoms directly onto supports. Journal of Materials Chemistry A, 2021, 9, 26676-26679.	5.2	6
14	Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 40-47.	2.1	28
15	Highly Emissive Perylene Diimide-Based Metallacages and Their Host–Guest Chemistry for Information Encryption. Journal of the American Chemical Society, 2020, 142, 18763-18768.	6.6	114
16	Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change. Molecular Systems Design and Engineering, 2020, 5, 1491-1503.	1.7	5
17	General synthesis of single atom electrocatalysts <i>via</i> a facile condensation–carbonization process. Journal of Materials Chemistry A, 2020, 8, 25959-25969.	5.2	14
18	The Interaction of Hydrogen with the van der Waals Crystal Î ³ -InSe. Molecules, 2020, 25, 2526.	1.7	11

SANLIANG LING

#	Article	IF	CITATIONS
19	Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. Journal of the American Chemical Society, 2020, 142, 2592-2600.	6.6	166
20	Correction to "Effects of Oxide Roughness at Metal Oxide Interface: MgO on Ag(001)― Journal of Physical Chemistry C, 2020, 124, 9628-9628.	1.5	0
21	Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. Journal of Chemical & Engineering Data, 2019, 64, 5985-5998.	1.0	372
22	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	6.6	371
23	Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation. Journal of the American Chemical Society, 2019, 141, 8346-8357.	6.6	58
24	Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites. ACS Central Science, 2018, 4, 235-245.	5.3	36
25	A and B site doping of a phonon-glass perovskite oxide thermoelectric. Journal of Materials Chemistry A, 2018, 6, 15640-15652.	5.2	17
26	Predicting vapor liquid equilibria using density functional theory: A case study of argon. Journal of Chemical Physics, 2018, 148, 224501.	1.2	10
27	Rational Design of a Low-Cost, High-Performance Metal–Organic Framework for Hydrogen Storage and Carbon Capture. Journal of Physical Chemistry C, 2017, 121, 1171-1181.	1.5	84
28	Look but don't touch. Nature Materials, 2017, 16, 501-502.	13.3	4
29	ls High-Density Amorphous Ice Simply a "Derailed―State along the Ice I to Ice IV Pathway?. Journal of Physical Chemistry Letters, 2017, 8, 1645-1650.	2.1	38
30	The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. Journal of the American Chemical Society, 2017, 139, 5547-5557.	6.6	100
31	Room Temperature Magnetically Ordered Polar Corundum GaFeO ₃ Displaying Magnetoelectric Coupling. Journal of the American Chemical Society, 2017, 139, 1520-1531.	6.6	34
32	Violations of Löwenstein's rule in zeolites. Chemical Science, 2017, 8, 7483-7491.	3.7	84
33	Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides. Energy and Environmental Science, 2017, 10, 1917-1922.	15.6	52
34	In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chemical Science, 2016, 7, 6263-6272.	3.7	69
35	Different Conformations of 2′-Deoxycytidine in the Gas and Solid Phases: Competition between Intra- and Intermolecular Hydrogen Bonds. Journal of Physical Chemistry A, 2016, 120, 8199-8210.	1.1	12
36	Dynamic acidity in defective UiO-66. Chemical Science, 2016, 7, 4706-4712.	3.7	147

SANLIANG LING

#	Article	IF	CITATIONS
37	Unusually Large Band Gap Changes in Breathing Metal–Organic Framework Materials. Journal of Physical Chemistry C, 2015, 119, 16667-16677.	1.5	52
38	Theoretical study of conformational disorder and selective adsorption of small organic molecules in the flexible metal-organic framework material MIL-53-Fe. Molecular Simulation, 2015, 41, 1348-1356.	0.9	7
39	Contradistinct Thermoresponsive Behavior of Isostructural MIL-53 Type Metal–Organic Frameworks by Modifying the Framework Inorganic Anion. Chemistry of Materials, 2015, 27, 85-95.	3.2	44
40	Thorough theoretical search of conformations of neutral, protonated and deprotonated glutamine in gas phase. Computational and Theoretical Chemistry, 2013, 1020, 14-21.	1.1	11
41	From atoms to product reliability: toward a generalized multiscale simulation approach. Journal of Computational Electronics, 2013, 12, 638-650.	1.3	6
42	Effects of atomic scale roughness at metal/insulator interfaces on metal work function. Physical Chemistry Chemical Physics, 2013, 15, 19615.	1.3	19
43	Excited-State Absorption of Conjugated Polymers in the Near-Infrared and Visible: A Computational Study of Oligofluorenes. Journal of Physical Chemistry C, 2013, 117, 6889-6895. A computational study of Si–H bonds as precursors for neutral similimath	1.5	19
44	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si8.gif" overflow="scroll"> <mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">E</mml:mi </mml:mrow><mml:mrow><mml:mo>â€2</mml:mo></mml:mrow>centres in amorphous silica and at the Si/SiO2 interface. Microelectronic Engineering, 2013, 109.</mml:msup></mml:mrow>	sup> <td>l:mrow></td>	l:mrow>
45	310-313. Effects of Oxide Roughness at Metal Oxide Interface: MgO on Ag(001). Journal of Physical Chemistry C, 2013, 117, 5075-5083.	1.5	23
46	Influence of Prototropic Reactions on the Absorption and Fluorescence Spectra of Methyl p-dimethylaminobenzoate and Its Two Ortho Derivatives. Journal of Fluorescence, 2011, 21, 1749-1762.	1.3	12
47	SSC: A tool for constructing libraries for systematic screening of conformers. Journal of Computational Chemistry, 2011, 32, 2047-2054.	1.5	7
48	Reactivity of hydrogen and methanol on (001) surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3. Catalysis Today, 2011, 165, 41-48.	2.2	31
49	Comparison of some representative density functional theory and wave function theory methods for the studies of amino acids. Journal of Computational Chemistry, 2009, 30, 589-600.	1.5	61
50	Gaseous Arginine Conformers and Their Unique Intramolecular Interactions. Journal of Physical Chemistry A, 2006, 110, 12282-12291.	1.1	100