
Elisa Ten Hacken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell, 2019, 36, 369-384.e13.	7.7	224
2	Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 401-413.	1.9	175
3	HS1 has a central role in the trafficking and homing of leukemic B cells. Blood, 2010, 116, 3537-3546.	0.6	89
4	Targeting B-cell anergy in chronic lymphocytic leukemia. Blood, 2013, 121, 3879-3888.	0.6	73
5	A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion. Cancer Cell, 2019, 35, 283-296.e5.	7.7	71
6	Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. Journal of Experimental Medicine, 2018, 215, 681-697.	4.2	65
7	Targeting the LYN/HS1 signaling axis in chronic lymphocytic leukemia. Blood, 2013, 121, 2264-2273.	0.6	50
8	The importance of B cell receptor isotypes and stereotypes in chronic lymphocytic leukemia. Leukemia, 2019, 33, 287-298.	3.3	39
9	Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. JCI Insight, 2018, 3, .	2.3	39
10	SLAMF6 as a Regulator of Exhausted CD8+ T Cells in Cancer. Cancer Immunology Research, 2019, 7, 1485-1496.	1.6	34
11	Functional Differences between IgM and IgD Signaling in Chronic Lymphocytic Leukemia. Journal of Immunology, 2016, 197, 2522-2531.	0.4	31
12	A hotspot mutation in transcription factor IKZF3 drives B cell neoplasia via transcriptional dysregulation. Cancer Cell, 2021, 39, 380-393.e8.	7.7	27
13	High throughput single-cell detection of multiplex CRISPR-edited gene modifications. Genome Biology, 2020, 21, 266.	3.8	23
14	CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. Leukemia, 2020, 34, 1599-1612.	3.3	21
15	The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment. Leukemia, 2020, 34, 1588-1598.	3.3	18
16	Understanding CLL biology through mouse models of human genetics. Blood, 2021, 138, 2621-2631.	0.6	11
17	Calreticulin as a novel B-cell receptor antigen in chronic lymphocytic leukemia. Haematologica, 2017, 102, e394-e396.	1.7	10
18	Activation of <i>Notch</i> and <i>Myc</i> Signaling via B-cell–Restricted Depletion of <i>Dnmt3a</i> Generates a Consistent Murine Model of Chronic Lymphocytic Leukemia. Cancer Research, 2021, 81, 6117-6130.	0.4	10

Elisa Ten Hacken

#	Article	IF	CITATIONS
19	<i>IKZF3</i> Overexpression Phenocopies Gain-of-Function Mutation in Chronic Lymphocytic Leukemia. Blood, 2020, 136, 9-9.	0.6	10
20	SnapShot: Chronic Lymphocytic Leukemia. Cancer Cell, 2017, 32, 716-716.e1.	7.7	9
21	Interrogation of Individual CLL Loss-of-Function Lesions By CRISPR In Vivo Editing Reveals Common and Unique Pathway Alterations. Blood, 2019, 134, 684-684.	0.6	2
22	HSP90, a chaperone that can make you SYK. Blood, 2017, 129, 542-544.	0.6	1
23	Expression of Sf3b1-K700E accelerates the Development of Chronic Lymphocytic Leukemia in a Del(13q) Murine Model. Blood, 2020, 136, 4-5.	0.6	1
24	Multiplexed CRISPR <i>In Vivo</i> Editing of CLL Loss-of-Function Lesions Models Transformation of Chronic Lymphocytic Leukemia into Richter's Syndrome. Blood, 2020, 136, 2-3.	0.6	1
25	Integrated Genomic and Proteomic Analysis of Murine CLL-like Cells Reveals SF3B1 Mutation to Impact DNA Damage Response and BCR Signaling. Blood, 2018, 132, 947-947.	0.6	0
26	KZF-L162R Mutation Affects Splenic Mature B Cell Development and Alters Expression of Aiolos Target Genes. Blood, 2018, 132, 668-668.	0.6	0
27	B Cell Restricted Expression of Mutated IKZF3 modulates BCR Signaling and Homing Pathways in a Mouse Model of CLL. Blood, 2019, 134, 848-848.	0.6	0
28	Identification of Genotype-Specific Therapeutic Vulnerabilities By Comparative Dynamic BH3 Profiling Analysis of Human and Murine CLL. Blood, 2019, 134, 4281-4281.	0.6	0
29	B Cell-Restricted Depletion of Dnmt3a Activates Notch Signaling and Causes Chronic Lymphocytic Leukemia. Blood, 2021, 138, 249-249.	0.6	0