List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers, 2022, 14, 1549.	4.5	21
2	Aerogelâ€Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling. Advanced Science, 2022, 9, e2201190.	11.2	55
3	Design, Synthesis, and Use of High Temperature Resistant Aerogels Exceeding 800 oC. ES Materials & Manufacturing, 2021, , .	1.9	4
4	Advances on Dimensional Structure Designs and Functional Applications of Aerogels. Acta Chimica Sinica, 2021, 79, 430.	1.4	8
5	Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks. RSC Advances, 2021, 11, 7331-7337.	3.6	4
6	Robust Silica–Polyimide Aerogel Blanket for Water-Proof and Flame-Retardant Self-Floating Artificial Island. Frontiers in Materials, 2021, 8, .	2.4	5
7	Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels. Langmuir, 2021, 37, 5923-5931.	3.5	10
8	Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Progress in Polymer Science, 2021, 118, 101408.	24.7	103
9	Suppression of lithium dendrite by aramid nanofibrous aerogel separator. Journal of Power Sources, 2021, 515, 230608.	7.8	10
10	Mass Formation of α-Cyclodextrin Hexagonal Rods by the Direct Solvent Evaporation Strategy. ACS Applied Bio Materials, 2021, 4, 8033-8038.	4.6	1
11	Solid–Liquid–Vapor Triphase Gel. Langmuir, 2021, 37, 13501-13511.	3.5	4
12	Superhydrophobic Silica Aerogels and Their Layer-by-Layer Structure for Thermal Management in Harsh Cold and Hot Environments. ACS Nano, 2021, 15, 19771-19782.	14.6	57
13	Wearable Multiparameter Platform Based on AlGaN/GaN Highâ€electronâ€mobility Transistors for Realâ€time Monitoring of pH and Potassium Ions in Sweat. Electroanalysis, 2020, 32, 422-428.	2.9	12
14	Flexible and Adaptable Fuel Cell Pack with High Energy Density Realized by a Bifunctional Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 4473-4481.	8.0	19
15	Superhydrophobic polyimide aerogels via conformal coating strategy with excellent underwater performances. Journal of Applied Polymer Science, 2020, 137, 48849.	2.6	13
16	InGaN-Based Lasers with an Inverted Ridge Waveguide Heterogeneously Integrated on Si(100). ACS Photonics, 2020, 7, 2636-2642.	6.6	8
17	Polymeric hybrid aerogels and their biomedical applications. Soft Matter, 2020, 16, 9160-9175.	2.7	50
18	Reaction-Spun Transparent Silica Aerogel Fibers. ACS Nano, 2020, 14, 11919-11928.	14.6	90

#	Article	IF	CITATIONS
19	The intrinsic microstructure of supramolecular hydrogels derived from α-cyclodextrin and pluronic F127: nanosheet building blocks and hierarchically self-assembled structures. Soft Matter, 2020, 16, 5906-5909.	2.7	10
20	An electronic enzyme-linked immunosorbent assay platform for protein analysis based on magnetic beads and AlGaN/GaN high electron mobility transistors. Analyst, The, 2020, 145, 2725-2730.	3.5	8
21	Advances in Cyclodextrin Polymers and Their Applications in Biomedicine. Acta Chimica Sinica, 2020, 78, 232.	1.4	21
22	InGaN-Based Quantum Well Superluminescent Diode Monolithically Grown on Si. ACS Photonics, 2019, 6, 2104-2109.	6.6	10
23	A differential extended gate-AlGaN/GaN HEMT sensor for real-time detection of ionic pollutants. Analytical Methods, 2019, 11, 3981-3986.	2.7	20
24	Phase-separation induced synthesis of superhydrophobic silica aerogel powders and granules. Journal of Solid State Chemistry, 2019, 279, 120971.	2.9	26
25	Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation. Journal of Materials Chemistry A, 2019, 7, 1244-1251.	10.3	129
26	Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction. Molecules, 2019, 24, 1821.	3.8	43
27	Recyclable Nanoporous Materials with Ordered Tunnels Selfâ€Assembled from α―and γ yclodextrins. ChemNanoMat, 2019, 5, 838-846.	2.8	9
28	Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si. ACS Photonics, 2018, 5, 699-704.	6.6	37
29	Functionalization of Silica Microparticles with Multiple-Responsive Copolymers for Smart Controlled Chromatograph. Industrial & Engineering Chemistry Research, 2018, 57, 352-360.	3.7	4
30	Surfactant-free synthesis of silica aerogel microspheres with hierarchically porous structure. Journal of Colloid and Interface Science, 2018, 515, 1-9.	9.4	31
31	Thermoresponsive Polyrotaxane Aerogels: Converting Molecular Necklaces into Tough Porous Monoliths. ACS Applied Materials & Interfaces, 2018, 10, 1468-1473.	8.0	36
32	On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-5.	2.9	55
33	Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO ₂ Reduction through Bridging Ligands. Journal of the American Chemical Society, 2018, 140, 16514-16520.	13.7	208
34	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie, 2018, 130, 16685-16689.	2.0	28
35	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie - International Edition, 2018, 57, 16447-16451.	13.8	262
36	On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si. Scientific Reports, 2018, 8, 7922.	3.3	44

#	Article	IF	CITATIONS
37	Template-Free Self-Assembly of Fluorine-Free Hydrophobic Polyimide Aerogels with Lotus or Petal Effect. ACS Applied Materials & Interfaces, 2018, 10, 16901-16910.	8.0	74
38	All-conjugated donor–acceptor graft/block copolymers as single active components and surfactants in all-polymer solar cells. Microsystem Technologies, 2017, 23, 1183-1189.	2.0	6
39	Robust urethane-bridged silica aerogels available for water-carved aerosculptures. New Journal of Chemistry, 2017, 41, 1953-1958.	2.8	18
40	Cyclic molecule aerogels: a robust cyclodextrin monolith with hierarchically porous structures for removal of micropollutants from water. Journal of Materials Chemistry A, 2017, 5, 4308-4313.	10.3	58
41	Reversible superhydrophobic coatings on lifeless and biotic surfaces via dry-painting of aerogel microparticles. Journal of Materials Chemistry A, 2016, 4, 11408-11415.	10.3	35
42	Graphene Hybrid Aerogels Made via Phase Transfer Strategy. Advanced Materials Interfaces, 2016, 3, 1600541.	3.7	5
43	Hybrid Aerogels: Graphene Hybrid Aerogels Made via Phase Transfer Strategy (Adv. Mater. Interfaces) Tj ETQq1 1	0.784314	rgBT /Ove
44	From anisotropic graphene aerogels to electron- and photo-driven phase change composites. Journal of Materials Chemistry A, 2016, 4, 17042-17049.	10.3	179
45	Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Microporous and Mesoporous Materials, 2015, 218, 192-198.	4.4	65
46	A high energy density Li ₂ S@C nanocomposite cathode with a nitrogen-doped carbon nanotube top current collector. Journal of Materials Chemistry A, 2015, 3, 18913-18919.	10.3	55
47	Polypyrrole/Silver Coaxial Nanowire Aero-Sponges for Temperature-Independent Stress Sensing and Stress-Triggered Joule Heating. ACS Nano, 2015, 9, 4244-4251.	14.6	175
48	Binary Crystallized Supramolecular Aerogels Derived from Host–Guest Inclusion Complexes. ACS Nano, 2015, 9, 11389-11397.	14.6	64
49	Autocatalytic synthesis of molecular-bridged silica aerogels with excellent absorption and super elasticity. RSC Advances, 2015, 5, 91407-91413.	3.6	18
50	Effects of catalyst loading amount on the synthesis of poly(3-hexylthiophene) via externally initiated Kumada catalyst-transfer polycondensation. Frontiers of Materials Science, 2014, 8, 383-390.	2.2	3
51	Synthesis of All-Conjugated ABA and AB-type Donor-Acceptor Block Copolymers and Their Application in All-Polymer Solar Cells. Materials Research Society Symposia Proceedings, 2014, 1628, 1.	0.1	1
52	Synthesis and morphology of all onjugated donor–acceptor block copolymers based on poly(3â€hexylthiophene) and poly(naphthalene diimide). Journal of Polymer Science Part A, 2014, 52, 1139-1148.	2.3	18
53	Ambipolar field-effect transistors using conjugated polymers with structures of bilayer, binary blends, and paralleled nanofibers. Journal of Materials Chemistry C, 2014, 2, 7489-7493.	5.5	10
54	A versatile ambient pressure drying approach to synthesize silica-based composite aerogels. RSC Advances, 2014, 4, 51146-51155.	3.6	43

#	Article	IF	CITATIONS
55	Photo-responsive cholesterol-substituted diacetylenic organogels: morphology tuning, photo-switching and photo-polymerization. Soft Matter, 2013, 9, 9785.	2.7	33
56	Synthesis of all-conjugated donor–acceptor block copolymers and their application in all-polymer solar cells. Polymer Chemistry, 2013, 4, 5518.	3.9	68
5 7	Synthesis and Characterization of All-Conjugated Graft Copolymers Comprised of n-Type or p-Type Backbones and Poly(3-hexylthiophene) Side Chains. Macromolecules, 2013, 46, 1783-1793.	4.8	44
58	Synthesis of All-Conjugated Donor–Acceptor–Donor ABA-Type Triblock Copolymers via Kumada Catalyst-Transfer Polycondensation. ACS Macro Letters, 2013, 2, 506-510.	4.8	49
59	Nonlinear optical switching of PDA/Ag hybrid materials based on temperature- and pH-responsive threading and dethreading of cyclodextrin polypseudorotaxane. Applied Physics A: Materials Science and Processing, 2012, 109, 621-626.	2.3	3
60	Poly(n-butyl methacrylate) end-capped polyrotaxanes via ATRP initiated with α-cyclodextrin and Pluronic 17R4 based inclusion complexes. Polymer, 2012, 53, 2864-2872.	3.8	12
61	Slightly Crossâ€Linked Polyrotaxanes Made by Linking <i>α</i> â€Cyclodextrins Entrapped in Polyrotaxanes Using Hexamethylene Diisocyanate. Chinese Journal of Chemistry, 2012, 30, 2453-2460.	4.9	5
62	Looseâ€Fit Polypseudorotaxanes Fabricated by <i>γ</i> â€CDs Threaded Onto a Single PNIPAAmâ€PEGâ€PNIPAA Chain in Aqueous Solution. Macromolecular Chemistry and Physics, 2012, 213, 1532-1539.	۹.2 ⁴	9
63	Formation of a Polypseudorotaxane via Selfâ€Assembly of γâ€Cyclodextrin with Poly(<i>N</i> â€isopropylacrylamide). Macromolecular Rapid Communications, 2012, 33, 1143-1148.	3.9	27
64	Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins. Science China Chemistry, 2012, 55, 1115-1124.	8.2	4
65	Synthesis and characterization of polyrotaxanes comprising α-cyclodextrins and poly(ε-caprolactone) end-capped with poly(N-isopropylacrylamide)s. Polymer, 2012, 53, 2361-2368.	3.8	10
66	Novel triblock copolymers comprising a polyrotaxane middle block flanked by PNIPAAm blocks showing both thermo- and solvent-response. Journal of Materials Chemistry, 2011, 21, 3243-3250.	6.7	30
67	Dual thermo-responsive polyrotaxane-based triblock copolymers synthesized viaATRP of N-isopropylacrylamide initiated with self-assemblies of Br end-capped Pluronic F127 with β-cyclodextrins. Polymer Chemistry, 2011, 2, 931-940.	3.9	43
68	Residing states of β-cyclodextrins in solid-state polyrotaxanes comprising pluronic F127 and PNIPAAm. Polymer, 2011, 52, 5362-5368.	3.8	12
69	Distinguishing channel-type crystal structure from dispersed structure in β-cyclodextrin based polyrotaxanes via FTIR spectroscopy. Frontiers of Materials Science, 2011, 5, 329-334.	2.2	9
70	Stable and Unconventional Conformation of Single PEG Bent γ Dâ€Based Polypseudorotaxanes. Macromolecular Chemistry and Physics, 2011, 212, 2319-2327.	2.2	14
71	Novel polyrotaxanes comprising Î ³ -cyclodextrins and Pluronic F127 end-capped with poly(N-isopropylacrylamide) showing solvent-responsive crystal structures. Polymer, 2011, 52, 347-355.	3.8	25
72	Solvent- and Thermoresponsive Polyrotaxanes with β-Cyclodextrin Dispersed/Aggregated Structures on a Pluronic F127 Backbone. Journal of Physical Chemistry B, 2010, 114, 5342-5349.	2.6	44

#	Article	IF	CITATIONS
73	Substrate consumption and biomass growth of Ralstonia eutropha at various SO/XO levels in batch cultures. Bioresource Technology, 2007, 98, 2599-2604.	9.6	15
74	Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Applied Microbiology and Biotechnology, 2007, 75, 871-878.	3.6	78