
Ruth E Cameron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating Drug Release from Short Poly(ethylene glycol) Block Initiated Poly(L-lactide) Di-block Copolymers. Pharmaceutical Research, 2023, 40, 1697-1707.	3.5	2
2	Avoiding artefacts in MicroCT imaging of collagen scaffolds: Effect of phosphotungstic acid (PTA)-staining and crosslink density. Bioactive Materials, 2022, 8, 210-219.	15.6	2
3	The evolution of the structure and mechanical properties of fully bioresorbable polymer-glass composites during degradation. Composites Science and Technology, 2022, 218, 109194.	7.8	4
4	A Mathematical Model of a Valve-Controlled Bioreactor for Platelet Production. Frontiers in Mechanical Engineering, 2022, 8, .	1.8	0
5	Non-linear dissolution mechanisms of sodium calcium phosphate glasses as a function of pH in various aqueous media. Journal of the European Ceramic Society, 2021, 41, 901-911.	5.7	8
6	Modulating hESC-derived cardiomyocyte and endothelial cell function with triple-helical peptides for heart tissue engineering. Biomaterials, 2021, 269, 120612.	11.4	5
7	Collagen Film Activation with Nanoscale IKVAV-Capped Dendrimers for Selective Neural Cell Response. Nanomaterials, 2021, 11, 1157.	4.1	5
8	The 3D Printing of Freestanding PLLA Thin Layers and Improving First Layer Consistency through the Introduction of Sacrificial PVA. Applied Sciences (Switzerland), 2021, 11, 6320.	2.5	3
9	The effects of despeckling filters on pore size measurements in collagen scaffold micro T data. Journal of Microscopy, 2021, 284, 142-156.	1.8	1
10	Tailoring the biofunctionality of collagen biomaterials via tropoelastin incorporation and EDC-crosslinking. Acta Biomaterialia, 2021, 135, 150-163.	8.3	6
11	A technique for improving dispersion within polymer–glass composites using polymer precipitation. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104767.	3.1	4
12	Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds. Applied Physics Reviews, 2021, 8, .	11.3	5
13	Collagen scaffolds functionalized with triple-helical peptides support 3D HUVEC culture. International Journal of Energy Production and Management, 2020, 7, 471-482.	3.7	11
14	Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 2020, 7, 554597.	2.4	74
15	MicroCT analysis of connectivity in porous structures: optimizing data acquisition and analytical methods in the context of tissue engineering. Journal of the Royal Society Interface, 2020, 17, 20190833.	3.4	11
16	Crosslinking Collagen Constructs: Achieving Cellular Selectivity Through Modifications of Physical and Chemical Properties. Applied Sciences (Switzerland), 2020, 10, 6911.	2.5	44
17	Scale and structure dependent solute diffusivity within microporous tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2020, 31, 46.	3.6	14
18	Poly- <scp>l</scp> -Lactic Acid Nanotubes as Soft Piezoelectric Interfaces for Biology: Controlling Cell Attachment <i>via</i> Polymer Crystallinity. ACS Applied Bio Materials, 2020, 3, 2140-2149.	4.6	27

#	Article	IF	CITATIONS
19	Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus, 2020, 10, 20190079.	3.0	85
20	Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials, 2020, 254, 120109.	11.4	83
21	Natural Biopolymers for Biomedical Applications. , 2019, , 162-176.		2
22	Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking. Nanoscale, 2019, 11, 15120-15130.	5.6	33
23	Fabrication of free standing collagen membranes by pulsed-electrophoretic deposition. Biofabrication, 2019, 11, 045017.	7.1	8
24	Impact of UV- and carbodiimide-based crosslinking on the integrin-binding properties of collagen-based materials. Acta Biomaterialia, 2019, 100, 280-291.	8.3	33
25	Targeted protein delivery: carbodiimide crosslinking influences protein release from microparticles incorporated within collagen scaffolds. International Journal of Energy Production and Management, 2019, 6, 279-287.	3.7	6
26	Tuning structural relaxations, mechanical properties, and degradation timescale of PLLA during hydrolytic degradation by blending with PLCL-PEG. Polymer Degradation and Stability, 2019, 170, 109015.	5.8	17
27	Cellular response to collagen-elastin composite materials. Acta Biomaterialia, 2019, 86, 158-170.	8.3	20
28	Engineering vasculature: Architectural effects on microcapillary-like structure self-assembly. PLoS ONE, 2019, 14, e0210390.	2.5	7
29	Investigation of the intrinsic permeability of ice-templated collagen scaffolds as a function of their structural and mechanical properties. Acta Biomaterialia, 2019, 83, 189-198.	8.3	20
30	Effects of reaction pH on self-crosslinked chitosan-carrageenan polyelectrolyte complex gels and sponges. JPhys Materials, 2019, 2, 015003.	4.2	9
31	Short poly(ethylene glycol) block initiation of poly(<scp>l</scp> ″actide) diâ€block copolymers: a strategy for tuning the degradation of resorbable devices. Polymer International, 2018, 67, 726-738.	3.1	9
32	Nearâ€Field Electrospinning Patterning Polycaprolactone and Polycaprolactone/Collagen Interconnected Fiber Membrane. Macromolecular Materials and Engineering, 2018, 303, 1700463.	3.6	18
33	An Engineered Human Adipose/Collagen Model for <i>In Vitro</i> Breast Cancer Cell Migration Studies. Tissue Engineering - Part A, 2018, 24, 1309-1319.	3.1	29
34	Macromol. Mater. Eng. 2/2018. Macromolecular Materials and Engineering, 2018, 303, 1870009.	3.6	0
35	Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials. Acta Biomaterialia, 2018, 65, 88-101.	8.3	33
36	Optimising collagen scaffold architecture for enhanced periodontal ligament fibroblast migration. Journal of Materials Science: Materials in Medicine, 2018, 29, 166.	3.6	28

#	Article	IF	CITATIONS
37	Stiffening by Osmotic Swelling Constraint in Cartilage‣ike Cell Culture Scaffolds. Macromolecular Bioscience, 2018, 18, e1800247.	4.1	10
38	The apatite forming ability of micro- and nanocomposites of α-Tricalcium phosphate/poly (D,L-lactide-co-glycolide). Materials Technology, 2018, 33, 803-809.	3.0	1
39	Coupling of a specific photoreactive triple-helical peptide to crosslinked collagen films restores binding and activation of DDR2 and VWF. Biomaterials, 2018, 182, 21-34.	11.4	16
40	Tumour cell invasiveness and response to chemotherapeutics in adipocyte invested 3D engineered anisotropic collagen scaffolds. Scientific Reports, 2018, 8, 12658.	3.3	18
41	Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: Enhancing production and purity. Biomaterials, 2018, 182, 135-144.	11.4	40
42	3D imaging of cells in scaffolds: direct labelling for micro CT. Journal of Materials Science: Materials in Medicine, 2018, 29, 86.	3.6	13
43	Towards Cellular Sieving: Exploring the Limits of Scaffold Accessibility for Cell Type Specific Invasion. Advanced Biology, 2018, 2, 1700257.	3.0	5
44	<i>In situ</i> ESEM imaging of the vapor-pressure-dependent sublimation-induced morphology of ice. Physical Review Materials, 2018, 2, .	2.4	6
45	The Mechanics of Brow-Suspension Ptosis Repair: A Comparative Study of Fox Pentagon and Crawford Triangle Techniques. Ophthalmic Plastic and Reconstructive Surgery, 2017, 33, 22-26.	0.8	0
46	Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomaterialia, 2017, 49, 218-234.	8.3	114
47	Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials, 2017, 114, 34-43.	11.4	111
48	The effect of the type of HA on the degradation of PLGA/HA composites. Materials Science and Engineering C, 2017, 70, 824-831.	7.3	21
49	Collagen-Fibrinogen Lyophilised Scaffolds for Soft Tissue Regeneration. Materials, 2017, 10, 568.	2.9	14
50	Orthopedic Applications: Bioceramic and Biopolymer Nanocomposite Materials. , 2017, , 1276-1288.		0
51	The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites. Acta Biomaterialia, 2016, 45, 340-348.	8.3	21
52	Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 2016, 27, 148.	3.6	309
53	Collagen: a network for regenerative medicine. Journal of Materials Chemistry B, 2016, 4, 6484-6496.	5.8	137
54	Parameterizing the Transport Pathways for Cell Invasion in Complex Scaffold Architectures. Tissue Engineering - Part C: Methods, 2016, 22, 409-417.	2.1	20

#	Article	IF	CITATIONS
55	The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen. Biomaterials, 2016, 85, 65-77.	11.4	38
56	Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds. Journal of Materials Science: Materials in Medicine, 2016, 27, 14.	3.6	73
57	Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory. Advanced Healthcare Materials, 2015, 4, 1317-1321.	7.6	48
58	Preface to the special issue: Biomaterials and Bioelectronics. APL Materials, 2015, 3, 014601.	5.1	0
59	Numerical simulations to determine the influence of mould design on ice-templated scaffold structures. Journal of Biomedical Engineering and Informatics, 2015, 1, 47.	0.2	14
60	Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair. International Journal of Energy Production and Management, 2015, 2, 77-85.	3.7	45
61	Altering crystal growth and annealing in ice-templated scaffolds. Journal of Materials Science, 2015, 50, 7537-7543.	3.7	23
62	Bioactive IGF-1 release from collagen–GAG scaffold to enhance cartilage repair in vitro. Journal of Materials Science: Materials in Medicine, 2015, 26, 5325.	3.6	46
63	Ionic solutes impact collagen scaffold bioactivity. Journal of Materials Science: Materials in Medicine, 2015, 26, 91.	3.6	8
64	The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype. Journal of Materials Science: Materials in Medicine, 2015, 26, 5349.	3.6	14
65	The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. Materials Science and Engineering C, 2015, 48, 642-650.	7.3	20
66	Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydrate Polymers, 2015, 132, 606-619.	10.2	111
67	Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomaterialia, 2015, 25, 131-142.	8.3	202
68	Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 19-25.	3.1	56
69	Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 116-128.	3.1	3
70	Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering C, 2014, 37, 141-147.	7.3	84
71	Microstructure and mechanical properties of synthetic brow-suspension materials. Materials Science and Engineering C, 2014, 35, 220-230.	7.3	17
72	A 3-D in vitro co-culture model of mammary gland involution. Integrative Biology (United Kingdom), 2014, 6, 618-626.	1.3	27

#	Article	IF	CITATIONS
73	The degradation behavior of nanoscale HA/PLGA and <i>α</i> -TCP/PLGA composites. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 85-93.	0.9	10
74	Collagen fibre implant for tendon and ligament biological augmentation. In vivo study in an ovine model. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1783-1793.	4.2	43
75	Preparation, characterization, and in vitro evaluation of nanostructured chitosan/apatite and chitosan/Si-doped apatite composites. Journal of Materials Science, 2013, 48, 841-849.	3.7	6
76	High-speed camera characterization of voluntary eye blinking kinematics. Journal of the Royal Society Interface, 2013, 10, 20130227.	3.4	110
77	A regenerative microchannel neural interface for recording from and stimulating peripheral axons <i>in vivo</i> . Journal of Neural Engineering, 2012, 9, 016010.	3.5	52
78	Hydrothermal Synthesis of Bioinert Oxide Film on Pure Ti: In Vitro and In Vivo Studies. Materials Research Society Symposia Proceedings, 2012, 1418, 133.	0.1	0
79	Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia, 2012, 8, 3080-3090.	8.3	181
80	A study of surface morphology and phase separation of polymer/cellulose liquid crystal composite membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 126-132.	4.7	13
81	Effects of lactic acid and glycolic acid on human osteoblasts: A way to understand PLGA involvement in PLGA/calcium phosphate composite failure. Journal of Orthopaedic Research, 2012, 30, 864-871.	2.3	67
82	The interplay between physical and chemical properties of protein films affects their bioactivity. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2401-2411.	4.0	17
83	Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomaterialia, 2012, 8, 667-676.	8.3	110
84	Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 62-74.	3.1	197
85	Bioceramic and Biopolymer Nanocomposite Materials for Use in Orthopedic Applications. , 2012, , 19-42.		0
86	The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L-lactide-co-glycolide)/-tricalcium phosphate nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1081-1089.	3.1	18
87	A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-l-lactide/α-tricalcium phosphate nanocomposites. Acta Biomaterialia, 2011, 7, 2176-2184.	8.3	34
88	Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomaterialia, 2011, 7, 3237-3247.	8.3	160
89	A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 2011, 32, 2248-2255.	11.4	35
90	Predictive modelling of the swelling behaviour of polyelectrolytic chitosan hydrogels. Carbohydrate Polymers, 2011, 86, 769-773.	10.2	7

#	Article	IF	CITATIONS
91	The influence of hydroxyapatite (HA) microparticles (m) and nanoparticles (n) on the thermal and dynamic mechanical properties of poly-l-lactide. Polymer, 2011, 52, 2883-2890.	3.8	47
92	A Multifunctional 3D Co-Culture System for Studies of Mammary Tissue Morphogenesis and Stem Cell Biology. PLoS ONE, 2011, 6, e25661.	2.5	82
93	The Spiral Peripheral Nerve Interface: Design, Fabrication and Performance. IFMBE Proceedings, 2011, , 1338-1341.	0.3	0
94	Design of a multiphase osteochondral scaffold. I. Control of chemical composition. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1057-1065.	4.0	49
95	A dynamic mechanical thermal analysis study of the viscoelastic properties and glass transition temperature behaviour of bioresorbable polymer matrix nanocomposites. Journal of Materials Science: Materials in Medicine, 2010, 21, 3085-3093.	3.6	16
96	Variations in Compaction Behaviour for Tablets of Different Size and Shape, Revealed by Small-Angle X-Ray Scattering. Journal of Pharmaceutical Sciences, 2010, 99, 4380-4389.	3.3	8
97	Swelling and Viscoelastic Characterisation of pHâ€Responsive Chitosan Hydrogels for Targeted Drug Delivery. Macromolecular Chemistry and Physics, 2010, 211, 644-650.	2.2	40
98	Changes in small-angle X-ray scattering during powder compaction — An explanation based on granule deformation. Powder Technology, 2010, 198, 404-411.	4.2	11
99	Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomaterialia, 2010, 6, 466-476.	8.3	36
100	Collagen–hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomaterialia, 2010, 6, 3957-3968.	8.3	209
101	Novel preparation and characterization of porous alginate films. Carbohydrate Polymers, 2010, 79, 989-997.	10.2	25
102	The degradation properties of co-continuous calcium phosphate polyester composites: insights with synchrotron micro-computer tomography. Journal of the Royal Society Interface, 2010, 7, S663-74.	3.4	7
103	Binding and Release Characteristics of Insulin-Like Growth Factor-1 from a Collagen–Glycosaminoglycan Scaffold. Tissue Engineering - Part C: Methods, 2010, 16, 1439-1448.	2.1	55
104	Investigation into the intragranular structures of microcrystalline cellulose and pre-gelatinised starch. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 377-387.	4.3	19
105	The Influence of <i>α</i> â€Tricalcium Phosphate Nanoparticles and Microparticles on the Degradation of Poly(<scp>D</scp> , <scp>L</scp> â€lactideâ€coâ€glycolide). Advanced Materials, 2009, 21, 3900-3904.	21.0	53
106	A small-angle X-ray scattering study of local variations within powder compacts. Powder Technology, 2009, 192, 287-297.	4.2	14
107	Degradation Properties of Co-Continuous Calciumâ^'Phosphateâ^'Polyester Composites. Biomacromolecules, 2009, 10, 1976-1985.	5.4	14
108	The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 2008, 19, 459-466.	3.6	72

#	Article	IF	CITATIONS
109	Carbon nanotubes for orthopaedic implants. International Journal of Material Forming, 2008, 1, 127-133.	2.0	21
110	A small-angle X-ray scattering study of powder compaction. Powder Technology, 2008, 188, 119-127.	4.2	19
111	Theory, calculation and observation of nonlinear optical activity in chiral molecules. Annual Reports on the Progress of Chemistry Section C, 2008, 104, 13.	4.4	2
112	Structure and Phase Transitions of Genipin, An Herbal Medicine and Naturally Occurring Cross-Linker. Crystal Growth and Design, 2008, 8, 1748-1753.	3.0	15
113	A Novel Way of Dispersing Fine Ceramic Particles in PLGA Matrix. Key Engineering Materials, 2007, 330-332, 511-514.	0.4	4
114	Contact Line Crystallization To Obtain Metastable Polymorphs. Crystal Growth and Design, 2007, 7, 108-112.	3.0	45
115	Effect of polymer addition on the contact line crystallisation of paracetamol. CrystEngComm, 2007, 9, 84-90.	2.6	19
116	Comparison of the Hydrolytic Degradation and Deformation Properties of a PLLAâ^'Lauric Acid Based Family of Biomaterials. Biomacromolecules, 2006, 7, 612-617.	5.4	24
117	Application of X-ray Microtomography and Image Processing to the Investigation of a Compacted Granular System. Particle and Particle Systems Characterization, 2006, 23, 229-236.	2.3	39
118	Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method. Powder Technology, 2006, 167, 134-140.	4.2	89
119	Morphological Behaviour of Thermoplastic Polyurethanes During Repeated Deformation. Macromolecular Materials and Engineering, 2006, 291, 301-324.	3.6	21
120	Examination of Hard Segment and Soft Segment Phase Separation in Polyurethane Medical Materials by Electron Microscopy Techniques. Microscopy and Microanalysis, 2006, 12, 151-155.	0.4	8
121	Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Biomaterials, 2005, 26, 633-643.	11.4	109
122	A degradation study of PLLA containing lauric acid. Biomaterials, 2005, 26, 2415-2422.	11.4	45
123	The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials, 2005, 26, 5771-5782.	11.4	124
124	Effect of processing route and acetone pre-treatment on the biostability of pellethane materials used in medical device applications. Biomaterials, 2005, 26, 6467-6476.	11.4	8
125	Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Biomaterials, 2005, 26, 621-631.	11.4	150
126	Extent of iron pick-up in deforoxamine-coupled polyurethane materials for therapy of chronic wounds. Biomaterials, 2005, 26, 6024-6033.	11.4	31

#	Article	IF	CITATIONS
127	The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. International Journal of Pharmaceutics, 2004, 282, 19-34.	5.2	67
128	The distribution of water in degrading polyglycolide. Part II: magnetic resonance imaging and drug release. Journal of Materials Science: Materials in Medicine, 2003, 14, 465-473.	3.6	18
129	The distribution of water in degrading polyglycolide. Part I: sample size and drug release. Journal of Materials Science: Materials in Medicine, 2003, 14, 457-464.	3.6	21
130	Polyglycolide-based blends for drug delivery: A differential scanning calorimetry study of the melting behavior. Journal of Applied Polymer Science, 2003, 89, 2937-2939.	2.6	12
131	The Degradation of Polyglycolide in Water and Deuterium Oxide. Part I: The Effect of Reaction Rate. Polymer, 2003, 44, 1421-1424.	3.8	22
132	The Degradation of Polyglycolide in Water and Deuterium Oxide. Part II: Nuclear Reaction Analysis and Magnetic Resonance Imaging of Water Distribution. Polymer, 2003, 44, 1425-1435.	3.8	16
133	The effect of buffer concentration, pH and buffer ions on the degradation and drug release from polyglycolide. Polymer International, 2003, 52, 358-366.	3.1	18
134	Microfocus small-angle X-ray scattering investigation of the skin-core microstructure of lyocell cellulose fibers. Journal of Applied Polymer Science, 2002, 83, 2799-2816.	2.6	34
135	Simultaneous SAXS and WAXS investigations of changes in native cellulose fiber microstructure on swelling in aqueous sodium hydroxide. Journal of Applied Polymer Science, 2002, 83, 1209-1218.	2.6	36
136	The hydrolytic degradation of polydioxanone (PDSII) sutures. Part I: Morphological aspects. Journal of Biomedical Materials Research Part B, 2002, 63, 280-290.	3.1	50
137	The hydrolytic degradation of polydioxanone (PDSII) sutures. Part II: Micromechanisms of deformation. Journal of Biomedical Materials Research Part B, 2002, 63, 291-298.	3.1	22
138	Structural aspects of the thermally accelerated ageing of cellulose: effect of cellulose source and ageing conditions. Polymer International, 2002, 51, 707-714.	3.1	5
139	The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials, 2002, 23, 2401-2409.	11.4	95
140	The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinisation. Carbohydrate Polymers, 2002, 50, 133-143.	10.2	75
141	Polyglycolide: degradation and drug release. Part II: drug release. Journal of Materials Science: Materials in Medicine, 2001, 12, 817-820.	3.6	22
142	Polyglycolide: degradation and drug release. Part I: changes in morphology during degradation. Journal of Materials Science: Materials in Medicine, 2001, 12, 811-816.	3.6	57
143	A small angle X-ray scattering study of pore structure in Tencel ® cellulose fibres and the effects of physical treatments. Polymer, 2000, 41, 4691-4698.	3.8	97
144	The ductile–brittle transition of irradiated isotactic polypropylene studied using simultaneous small angle X-ray scattering and tensile deformation. Polymer, 2000, 41, 3797-3807.	3.8	72

#	Article	IF	CITATIONS
145	A Review of the Relationship Between Thermally-Accelerated Ageing of Paper and Hornification. Cellulose, 1999, 6, 23-40.	4.9	137
146	Structure-property relationships in thermally aged cellulose fibers and paper. Journal of Applied Polymer Science, 1999, 74, 1465-1477.	2.6	35
147	Effect of hydrolytic degradation on the microstructure of quenched, amorphous poly(glycolic acid): an X-ray scattering study of hydrated samples. Polymer International, 1999, 48, 915-920.	3.1	12
148	The relationships between morphology, irradiation and the ductile-brittle transition of isotactic polypropylene. Polymer International, 1999, 48, 1173-1178.	3.1	23
149	Protein Based MaterialsKevin McGrath and David Kaplan (eds) Birkhäser, Boston and Basel, 1997 (xx +) Tj ETQq1	1.0.7843 0.9	14 rgBT /0v
150	Physical ageing and the embrittlement of poly(hydroxybutyrate) on storage: a time resolved small angle X-ray scattering study. Polymer International, 1998, 45, 308-312.	3.1	10
151	Effect of hydrolytic degradation and dehydration on the microstructure of 50:50 poly(glycolide-co-D,L-lactide). Polymer International, 1998, 45, 313-320.	3.1	3
152	Gelation of Amylopectin without Long Range Order. Starch/Staerke, 1994, 46, 285-287.	2.1	25
153	Minimizing sample evaporation in the environmental scanning electron microscope. Journal of Microscopy, 1994, 173, 227-237.	1.8	118
154	Diffusion of Bovine Serum Albumin in Amylopectin Gels Measured Using Fourier Transform Infrared Microspectroscopy. Macromolecules, 1994, 27, 2708-2713.	4.8	31
155	A Universal Feature in the Structure of Starch Granules from Different Botanical Sources. Starch/Staerke, 1993, 45, 417-420.	2.1	343
156	A small-angle x-ray scattering study of starch gelatinization in excess and limiting water. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 1197-1203.	2.1	88
157	A small-angle X-ray scattering study of the absorption of water into the starch granule. Carbohydrate Research, 1993, 244, 225-236.	2.3	98
158	A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer, 1992, 33, 2628-2635.	3.8	223
159	Non-resonant third-order susceptibilities measured for ethane, propane and n-butane. Chemical Physics Letters, 1987, 133, 520-524.	2.6	6
160	Phase Mapping: A Novel Design Approach for the Production of Calcium Phosphate-Collagen Biocomposites. Key Engineering Materials, 0, 254-256, 593-598.	0.4	7
161	Evaluation of the Degradation Properties of Carbonate Substituted Hydroxyapatite-Poly(<i>ε</i> -caprolactone) Composites. Key Engineering Materials, 0, 493-494, 120-125.	0.4	2
162	Orthopedic Applications: Bioceramic and Biopolymer Nanocomposite Materials. , 0, , 5815-5827.		0

10

#	Article	IF	CITATIONS
163	Induced Birefringence in 3D Printing: Concealing Information Optically within Printed Objects. Advanced Materials Technologies, 0, , 2200139.	5.8	0