Andrew Akbashev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature, 2013, 503, 509-512.	27.8	1,110
2	Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nature Photonics, 2016, 10, 611-616.	31.4	335
3	Correlative operando microscopy of oxygen evolution electrocatalysts. Nature, 2021, 593, 67-73.	27.8	321
4	Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Applied Physics Letters, 2011,	99,3.3	93
5	Activation of ultrathin SrTiO ₃ with subsurface SrRuO ₃ for the oxygen evolution reaction. Energy and Environmental Science, 2018, 11, 1762-1769.	30.8	83
6	Structural and chemical aspects of the design of multiferroic materials. Russian Chemical Reviews, 2011, 80, 1159-1177.	6.5	66
7	Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the "Virtual Project on the History of ALD― Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	65
8	A Facile Route for Producing Single-Crystalline Epitaxial Perovskite Oxide Thin Films. Nano Letters, 2014, 14, 44-49.	9.1	56
9	Electrocatalysis Goes Nuts. ACS Catalysis, 2022, 12, 4296-4301.	11.2	56
10	Optical properties and electronic structure of multiferroic hexagonal orthoferrites <i>R</i> FeO3 (<i>R</i> = Ho, Er, Lu). Journal of Applied Physics, 2012, 111, .	2.5	42
11	Hollandites as a new class of multiferroics. Scientific Reports, 2014, 4, 6203.	3.3	35
12	Electrochemical Reactivity of Faceted β-Co(OH) ₂ Single Crystal Platelet Particles in Alkaline Electrolytes. Journal of Physical Chemistry C, 2019, 123, 18783-18794.	3.1	23
13	Infraredâ€toâ€ultraviolet lightâ€absorbing BaTiO ₃ â€based ferroelectric photovoltaic materials. Journal of the American Ceramic Society, 2019, 102, 4188-4199.	3.8	23
14	BiFeO3 thin films prepared by MOCVD. Surface and Coatings Technology, 2007, 201, 9149-9153.	4.8	21
15	Reconstruction of the polar interface between hexagonal LuFeO3 and intergrown Fe3O4 nanolayers. Scientific Reports, 2012, 2, 672.	3.3	20
16	Complex structural-ferroelectric domain walls in thin films of hexagonal orthoferrites RFeO ₃ (R = Lu, Er). Applied Physics Letters, 2013, 103, 112907.	3.3	17
17	Reconstructed stacking faults in cobalt-doped hexagonal LuFeO3 revealed by mapping of cation distribution at the atomic scale. CrystEngComm, 2012, 14, 5373.	2.6	10
18	Crystallization engineering as a route to epitaxial strain control. APL Materials, 2015, 3, 106102.	5.1	10

#	Article	IF	CITATIONS
19	Formation of BiFeO ₃ from a Binary Oxide Superlattice Grown by Atomic Layer Deposition. ChemPhysChem, 2017, 18, 1966-1970.	2.1	10
20	Electrocatalysis on oxide surfaces: Fundamental challenges and opportunities. Current Opinion in Electrochemistry, 2022, 35, 101095.	4.8	9
21	Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect. Journal of Magnetism and Magnetic Materials, 2015, 384, 75-78.	2.3	5
22	Surface- and strain-tuning of the optical dielectric function in epitaxially grown CaMnO3. Applied Physics Letters, 2016, 108, .	3.3	4
23	In situ crystallization study of impurity phases in Bi–Fe–O thin films grown by atomic layer deposition. CrystEngComm, 2017, 19, 166-170.	2.6	2
24	Reply to 'Reconsidering the Shockley–Queisser limit of a ferroelectric insulator device'. Nature Photonics, 2017, 11, 330-330.	31.4	2