
Naofumi Uekawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934161/publications.pdf Version: 2024-02-01

Νλοειμαι Πεκλιμλ

#	Article	IF	CITATIONS
1	Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)42? ions. Physical Chemistry Chemical Physics, 2004, 6, 442.	2.8	101
2	Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. Journal of Colloid and Interface Science, 2003, 264, 378-384.	9.4	76
3	Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide. Physical Chemistry Chemical Physics, 2003, 5, 929-934.	2.8	74
4	Low Temperature Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles. Journal of Colloid and Interface Science, 2002, 250, 285-290.	9.4	62
5	Synthesis of CeO2Spherical Fine Particles by Homogeneous Precipitation Method with Polyethylene Glycol. Chemistry Letters, 2002, 31, 854-855.	1.3	60
6	Mixed-valence formation in highly oriented Ti-doped iron oxide film. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2161.	1.7	42
7	Synthesis of ZnO Nanoparticles by Decomposition of Zinc Peroxide. Chemistry Letters, 2001, 30, 606-607.	1.3	34
8	Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors. Journal of Colloid and Interface Science, 2008, 322, 497-504.	9.4	33
9	Effects of Preparation Conditions on the Structural and Optical Properties of Spark Plasma-Sintered PLZT (8/65/35) Ceramics. Journal of the American Ceramic Society, 2005, 88, 3327-3331.	3.8	32
10	Spark Plasma Sintering of Transparent PbZrO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 Ceramics. Japanese Journal of Applied Physics, 2002, 41, L219-L221.	1.5	27
11	Molecular mechanism of capillary condensation of acetonitrile vapor on MCM-41 with the aid of a time-correlation function analysis of IR spectroscopy. Chemical Physics Letters, 1998, 293, 541-546.	2.6	24
12	Synthesis of Lead Nickel Niobate–Barium Titanate System by Oxidation of Polyethylene Glycol–Cation Complex. Journal of the American Ceramic Society, 2002, 85, 329-334.	3.8	20
13	Compositional fluctuation and dielectric properties of Pb(Zr0.3Ti0.7)O3 ceramics prepared by spark plasma sintering. Materials Letters, 2002, 57, 771-775.	2.6	19
14	Characterization of CeO2 Fine Particles Prepared by the Homogeneous Precipitation Method with a Mixed Solutionof Ethylene Glycol and Polyethylene Glycol. Journal of Materials Research, 2004, 19, 1087-1092.	2.6	19
15	Synthesis of rutile and anatase TiO ₂ nanoparticles from Ti-peroxy compound aqueous solution with polyols. Journal of Materials Research, 2003, 18, 797-803.	2.6	18
16	Homogeneous precipitation of Cr3+–M2+ (M=Ni, Zn, Co, Cu) oxalate by oxidation of the polyethylene glycol–cation complex. Physical Chemistry Chemical Physics, 2000, 2, 5485-5490.	2.8	17
17	Synthesis and evaluation of Zr0.5Ti0.5B2 solid solution. Materials Research Bulletin, 2007, 42, 1019-1027.	5.2	17
18	Fabrication of Y3Al5O12-Al2O3 eutectic materials having ultra fine microstructure. Journal of the European Ceramic Society, 2008, 28, 235-240.	5.7	17

Ναογυμι Πεκανα

#	Article	IF	CITATIONS
19	Change in the compositional distribution in perovskite solid solutions during the sintering by SPS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 11-14.	3.5	14
20	Formation of porous spherical aggregated structure of ZnO nanoparticles by low-temperature heating of Zn(OH)2 in diol solution. Materials Letters, 2007, 61, 1729-1734.	2.6	14
21	Formation of GdAlO3–Al2O3 composite having fine pseudo-eutectic microstructure. Journal of the European Ceramic Society, 2008, 28, 2941-2946.	5.7	14
22	Microstructures and Pyroelectric Properties of Multicomposition 0.9PbZrO ₃ Â <i>x</i> PbTiO ₃ ·(0.1â^' <i>x</i>)Pb(Zn _{1/3} Nb _{2/3Ceramics. Journal of the American Ceramic Society, 2002, 85, 1988-1992.}	>) 0.e sub>3	3⊲/ s ub>
23	Sandwiched BaNd2Ti4O12/Bi4Ti3O12/BaNd2Ti4O12 ceramics prepared by spark plasma sintering. Materials Letters, 2003, 57, 4088-4092.	2.6	13
24	Preparation of porous titania particles by partial dissolution and heat treatment of hydrous titania. Journal of the Ceramic Society of Japan, 2016, 124, 1226-1228.	1.1	13
25	Formation of Y3Al5O12–Al2O3 eutectic microstructure with off-eutectic composition. Journal of the European Ceramic Society, 2008, 28, 1973-1978.	5.7	12
26	Formation of ultrafine eutectic-like microstructures of various rare earth oxide-Al ₂ O ₃ systems by use of amorphous phases. Journal of Materials Research, 2008, 23, 3396-3402.	2.6	12
27	Fabrication of Ce-TZP/Ba hexaaluminate composites using amorphous precursor of the second phase. Journal of the Ceramic Society of Japan, 2012, 120, 111-115.	1.1	12
28	Iron oxide films of a spinel structure from thermal decomposition of metal ion citrate complex. Journal of Materials Research, 1999, 14, 2002-2006.	2.6	11
29	Fabrication of BaTiO3/Ag composites using uniform Ag-deposited BaTiO3 particles. Journal of the Ceramic Society of Japan, 2009, 117, 1328-1332.	1.1	11
30	Sintering of Lead Titanate Using a Sparkâ€Plasma‣intering Technique. Journal of the American Ceramic Society, 2004, 87, 541-545.	3.8	10
31	Low-Temperature Synthesis of ZnO Nanoparticles by Heating of Zn(OH)2 in a Neutral Mixed Solution of Ethanol and H2O. Journal of the Ceramic Society of Japan, 2005, 113, 439-441.	1.3	9
32	Fabrication of dense material having homogeneous GdAlO3–Al2O3 eutectic-like microstructure with off-eutectic composition by consolidation of the amorphous. Journal of the European Ceramic Society, 2009, 29, 2419-2422.	5.7	9
33	Synthesis of a stable sol of ZnO nanoparticles by low-temperature heating of Zn(OH)2 in ethylene glycol containing Zn2+ ions. Journal of the Ceramic Society of Japan, 2010, 118, 96-101.	1.1	9
34	Synthesis of stable sol of ZnS nanoparticles by heating the mixture of ZnS precipitate and ethylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 132-137.	4.7	9
35	Design of pyroelectric properties by controlling compositional distribution. Journal of the European Ceramic Society, 2006, 26, 613-617.	5.7	8
36	Synthesis of nitrogen-doped ZnO particles by decomposition of zinc nitrate hexahydrate in molten ammonium salts. Journal of Materials Research, 2009, 24, 3343-3349.	2.6	8

Ναογυμι Πεκανα

#	Article	IF	CITATIONS
37	SPS Using SiC Die. Key Engineering Materials, 2014, 617, 72-77.	0.4	8
38	Electronic and molecular dynamics of chemisorption on α-Fe2O3with time-delayed injection of donor–acceptor gases. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1327-1333.	1.7	7
39	Preparation of spherical and porous strontium titanate particles by hot water and hydrothermal conversion of hydrous titania. Ceramics International, 2020, 46, 6146-6153.	4.8	7
40	Low Temperature Synthesis of Titania Gel Containing Anatase and Rutile. Chemistry Letters, 2000, 29, 382-383.	1.3	6
41	Transition metal oxide films. Advanced Materials, 1995, 7, 312-315.	21.0	5
42	Synthesis of Titania Particles by Low-Temperature Hydrolysis Reaction of Titanium Alkoxide and Their Surface Properties. Journal of the Ceramic Society of Japan, 2007, 115, 840-845.	1.1	5
43	Room-temperature Formation of Alkoxide-derived Anatase Nanoparticles by Peroxotitanic Acid Approach. Chemistry Letters, 2007, 36, 1094-1095.	1.3	5
44	Fabrication of porous alumina using anisotropic boehmite particles. Journal of the Ceramic Society of Japan, 2008, 116, 1241-1243.	1.1	5
45	Effect of treatment conditions and titanium source on the hydrothermal synthesis of bismuth titanate particles. Journal of the European Ceramic Society, 2009, 29, 431-437.	5.7	5
46	Thermal stability improvement of porous alumina prepared from anisotropic boehmite particles. Journal of the Ceramic Society of Japan, 2010, 118, 608-612.	1.1	5
47	Control of orientation and electrical conductivity of doped ZnO films using a layered double hydroxide nanoparticle precursor and spark plasma sintering process. Scripta Materialia, 2013, 69, 131-134.	5.2	5
48	Synthesis of La-Doped Lead Magnesium Niobate by Oxidation of Polyethylen Glycol-Cation Complex Journal of the Ceramic Society of Japan, 2000, 108, 387-391.	1.3	4
49	Formation process of BaTiO ₃ particles by reaction between barium hydroxide aqueous solution and titania obtained by hydrolysis of titanium alkoxide. Journal of Materials Research, 2007, 22, 2631-2638.	2.6	4
50	Synthesis of nitrogen-doped zinc oxide particles by thermal decomposition of mixture between zinc peroxide aqueous sol and ammonium salts. Journal of the Ceramic Society of Japan, 2009, 117, 283-288.	1.1	4
51	Microstructure control of Ce-TZP/Ba ferrite composites using an amorphous precursor of the second phase. Journal of the Ceramic Society of Japan, 2010, 118, 823-826.	1.1	4
52	Synthesis of ZnO sols by low-temperature heating of ethylene glycol solution and control of their photoluminescence with addition of glucose. Journal of the Ceramic Society of Japan, 2013, 121, 62-67.	1.1	4
53	Synthesis of cerium oxide (IV) stable sol using the dialysis process of glycol solution of cerium nitrate hydrate. Journal of Sol-Gel Science and Technology, 2020, 93, 91-99.	2.4	4
54	Synthesis of Defect and Valence State Tuned Metal Oxide Nanoparticles with Colloid Chemical Solution Process: Control of Optical and Electrical Characteristics. Chemistry Letters, 2021, 50, 87-95.	1.3	4

Ναογυμι Πεκανα

#	Article	IF	CITATIONS
55	Determination of Region Size of Inhomogeneity in Lead Titanate Zirconate. Journal of the Ceramic Society of Japan, 1998, 106, 604-608.	1.3	3
56	Low temperature synthesis of titanium oxide sol and gel with Nb doping using dialysis process of metal chloride solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 1-6.	4.7	3
57	Synthesis of copper ion doped ZnS phosphor sols by peptization process of sulfide-citrate complex precipitates. Journal of the Ceramic Society of Japan, 2015, 123, 924-928.	1.1	2
58	Synthesis of gluconate modified layered titanate particles using hydrolysis reaction of Ti alkoxide and characterization of their swelling behavior and structural color. Journal of Sol-Gel Science and Technology, 2018, 85, 48-58.	2.4	2
59	Low-temperature synthesis of strontium titanate particles with high specific surface area. Journal of the Ceramic Society of Japan, 2021, 129, 683-690.	1.1	2
60	Preparation of flower-like titania particles from lithium titanate hydrate via acid treatment and hydrothermal crystallization. Journal of the Ceramic Society of Japan, 2022, 130, 294-298.	1,1	2
61	Effects of surface modification of $\hat{I}\pm$ -FeOOH powder on the sintering process of ferrite compacts. Physical Chemistry Chemical Physics, 2001, , .	2.8	1
62	Synthesis and Characterization of Titania-Sugar Alcohol Complex Nanoparticles. Journal of the Ceramic Society of Japan, 2006, 114, 807-813.	1.3	1
63	Characterization of oxides obtained by heating a mixture of peroxoniobic acid and peroxotitanic acid. Dalton Transactions, 2011, 40, 1817.	3.3	1
64	Low temperature preparation of Ce-TZP/Ba hexaaluminate composites. Journal of the Ceramic Society of Japan, 2011, 119, 903-908.	1.1	1
65	Synthesis of Ce ³⁺ -doped Y ₃ Al ₅ O ₁₂ phosphor particles by precipitation method with diamine molecules as precipitating agent. Journal of the Ceramic Society of Japan, 2014, 122, 54-57.	1.1	1
66	Synthesis of Stable Sols of Layered Titanate Nanoparticles using Dialysis and Applications for Thin Film Preparation. Journal of Applied Solution Chemistry and Modeling, 2015, 4, 165-172.	0.4	1
67	Sintering Behavior of ZnO Nanoparticles and Preparation of Nanoporous ZnO Compacts. Key Engineering Materials, 2004, 269, 75-78.	0.4	0
68	Synthesis of a stable sol of Mn2+-doped ZnS nanoparticles by low-temperature heating of sulfide precipitate in ethylene glycol. Journal of the Ceramic Society of Japan, 2011, 119, 346-350.	1.1	0
69	Preparation of oriented zinc oxide thin films by firing Zn–Al layered double hydroxide thin films. Materials Letters, 2012, 86, 125-128.	2.6	0
70	Titanium oxide thin film preparation with sol coatings of plate and spindle-shaped nanoparticles for control of optical transmittance. Journal of the Ceramic Society of Japan, 2016, 124, 60-65.	1.1	0
71	溶液ååįœã«ã,^ã,<機èf¼z性é,åŒ−亜é‰>ãfŠãfŽç²'åã®å•̂æ^œ³•. Journal of the Japan Society of Col	our Matterial	, 2009, 82, 16