List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934103/publications.pdf Version: 2024-02-01

ADIN DOSNED

#	Article	IF	CITATIONS
1	First Observations of Anomalous Cosmic Rays in to 36 Solar Radii. Astrophysical Journal, 2021, 912, 139.	4.5	10
2	The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29. Astronomy and Astrophysics, 2021, 656, A20.	5.1	36
3	A Multiâ€Purpose Heliophysics L4 Mission. Space Weather, 2021, 19, e2021SW002777.	3.7	15
4	Warning Time Analysis From SEP Simulations of a Twoâ€Tier REleASE System Applied to Mars Exploration. Space Weather, 2020, 18, e2019SW002354.	3.7	10
5	The Electron Proton Helium INstrument as an example for a Space Weather Radiation Instrument. Journal of Space Weather and Space Climate, 2020, 10, 53.	3.3	5
6	³ He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth. Astrophysical Journal, Supplement Series, 2020, 246, 42.	7.7	27
7	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	7.7	27
8	Probing the energetic particle environment near the Sun. Nature, 2019, 576, 223-227.	27.8	103
9	Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 39-56.	2.4	17
10	Detecting Upward Directed Charged Particle Fluxes in the Mars Science Laboratory Radiation Assessment Detector. Earth and Space Science, 2018, 5, 2-18.	2.6	6
11	Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit. Astronomy and Astrophysics, 2018, 611, A79.	5.1	29
12	Modeling the Evolution and Propagation of 10 September 2017 CMEs and SEPs Arriving at Mars Constrained by Remote Sensing and In Situ Measurement. Space Weather, 2018, 16, 1156-1169.	3.7	61
13	Solar energetic particle warnings from a coronagraph. Space Weather, 2017, 15, 240-257.	3.7	21
14	Automatic Nearâ€Realâ€Time Detection of CMEs in Mauna Loa Kâ€Cor Coronagraph Images. Space Weather, 2017, 15, 1288-1299.	3.7	6
15	Interplanetary coronal mass ejection observed at STEREOâ€A, Mars, comet 67P/Churyumovâ€Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9ÂAU. Journal of Geophysical Research: Space Physics, 2017, 122, 7865-7890.	2.4	87
16	Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars. Annales Geophysicae, 2016, 34, 133-141.	1.6	4
17	The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. Journal of Space Weather and Space Climate, 2016, 6, A13.	3.3	70
18	Calibration and Characterization of the Radiation Assessment Detector (RAD) on Curiosity. Space Science Reviews, 2016, 201, 201-233.	8.1	30

#	Article	IF	CITATIONS
19	MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST <i>MSL</i> MARTIAN YEAR: 2012–2014. Astrophysical Journal, 2015, 810, 24.	4.5	43
20	On determining the zenith angle dependence of the Martian radiation environment at Gale Crater altitudes. Geophysical Research Letters, 2015, 42, 10,557.	4.0	21
21	Variations of dose rate observed by MSL/RAD in transit to Mars. Astronomy and Astrophysics, 2015, 577, A58.	5.1	35
22	MSL-RAD radiation environment measurements. Radiation Protection Dosimetry, 2015, 166, 290-294.	0.8	18
23	Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Communications, 2015, 6, 7135.	12.8	142
24	Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory. Life Sciences in Space Research, 2015, 5, 6-12.	2.3	34
25	Measurements of the neutron spectrum on the Martian surface with MSL/RAD. Journal of Geophysical Research E: Planets, 2014, 119, 594-603.	3.6	58
26	Comparison of Martian surface ionizing radiation measurements from MSLâ€RAD with Badhwarâ€O'Neill 2011/HZETRN model calculations. Journal of Geophysical Research E: Planets, 2014, 119, 1311-1321.	3.6	42
27	Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector. Journal of Geophysical Research E: Planets, 2014, 119, 1345-1358.	3.6	44
28	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
29	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
30	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
31	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
32	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	12.6	224
33	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
34	Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars. Journal of Geophysical Research E: Planets, 2014, 119, 468-479.	3.6	64
35	The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations. Space Weather, 2014, 12, 257-276.	3.7	10
36	The Hohmann–Parker effect measured by the Mars Science Laboratory on the transfer from Earth to Mars: Consequences and opportunities. Planetary and Space Science, 2013, 89, 127-139.	1.7	20

#	Article	IF	CITATIONS
37	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
38	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
39	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
40	Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory. Science, 2013, 340, 1080-1084.	12.6	503
41	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
42	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
43	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
44	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	12.6	103
45	The Radiation Assessment Detector (RAD) Investigation. Space Science Reviews, 2012, 170, 503-558.	8.1	155
46	Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). Journal of Geophysical Research, 2012, 117, .	3.3	67
47	The Radiation Assessment Detector (RAD) Investigation. , 2012, , 503-558.		5
48	Earth-Moon-Mars Radiation Environment Module framework. Space Weather, 2010, 8, n/a-n/a.	3.7	62
49	A New Trend in Forecasting Solar Radiation Hazards. Space Weather, 2009, 7, .	3.7	12
50	Earth-Moon-Mars Radiation Environment Module (EMMREM). , 2007, , .		6
51	Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather, 2007, 5, n/a-n/a.	3.7	115
52	Solar Energetic Particles and Radioâ€silent Fast Coronal Mass Ejections. Astrophysical Journal, 2006, 642, 1222-1235.	4.5	26
53	Energetic Particle Observations. Space Science Reviews, 2006, 123, 217-250.	8.1	51
54	Energetic Particle Observations. Space Sciences Series of ISSI, 2006, , 217-250.	0.0	2

#	Article	IF	CITATIONS
55	A high energy telescope for the Solar Orbiter. Advances in Space Research, 2005, 36, 1426-1431.	2.6	14
56	The onset of solar energetic particle events: prompt release of deka-MeV protons and associated coronal activity. Astronomy and Astrophysics, 2005, 438, 1029-1042.	5.1	49
57	Suprathermal ions ahead of interplanetary shocks: New observations and critical instrumentation required for future space weather monitoring. Space Weather, 2004, 2, n/a-n/a.	3.7	11
58	Quiet time MEV electron increases at solar maximum: Ulysses cospin/ket observations. Advances in Space Research, 2003, 32, 663-668.	2.6	6
59	Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS. Geophysical Research Letters, 2003, 30, .	4.0	4
60	Properties of high heliolatitude solar energetic particle events and constraints on models of acceleration and propagation. Geophysical Research Letters, 2003, 30, .	4.0	57
61	Delay in solar energetic particle onsets at high heliographic latitudes. Annales Geophysicae, 2003, 21, 1367-1375.	1.6	37
62	The Ulysses fast latitude scans: COSPIN/KET results. Annales Geophysicae, 2003, 21, 1275-1288.	1.6	11
63	Ulysses COSPIN observations of cosmic rays and solar energetic particles from the South Pole to the North Pole of the Sun during solar maximum. Annales Geophysicae, 2003, 21, 1217-1228.	1.6	65
64	Association of Low-Charge-State Heavy lons up to 200 Reupstream of the Earth's bow shock with geomagnetic disturbances. Geophysical Research Letters, 2002, 29, 3-1.	4.0	26
65	3–20 MeV Electrons in the Inner Threeâ€dimensional Heliosphere at Solar Maximum:UlyssesCOSPIN/KET Observations. Astrophysical Journal, 2002, 579, 888-894.	4.5	24
66	Nature of the boundary between open and closed magnetic field line regions at the Sun revealed by composition data and numerical models. Journal of Geophysical Research, 2001, 106, 15869-15879.	3.3	17
67	Relationships of corotating rarefaction regions outside 40AU with solar observations: Heliospheric mass loading. COSPAR Colloquia Series, 2001, 11, 315-319.	0.2	1
68	Energetic particle signatures of a corotating interaction region from a high latitude coronal hole: SOHO, wind and Ulysses observations. Advances in Space Research, 2000, 26, 865-870.	2.6	5
69	The suprathermal seed population for corotating interaction region ions at 1 AU deduced from composition and spectra of H+, He++, and He+observed on Wind. Journal of Geophysical Research, 2000, 105, 23107-23122.	3.3	119
70	The Solar Origin of Corotating Interaction Regions and Their Formation in the Inner Heliosphere. Space Science Reviews, 1999, 89, 141-178.	8.1	78
71	CIR Morphology, Turbulence, Discontinuities, and Energetic Particles. Space Science Reviews, 1999, 89, 179-220.	8.1	79
72	In-ecliptic CIR-associated energetic particle events and polar coronal hole structures: SOHO/COSTEP observations for the Whole Sun Month Campaign. Journal of Geophysical Research, 1999, 104, 9881-9890.	3.3	18

#	Article	IF	CITATIONS
73	Differences in the temporal variations of galactic cosmic ray electrons and protons: Implications from Ulysses at solar minimum. Geophysical Research Letters, 1999, 26, 2133-2136.	4.0	42
74	Amplitude evolution and rigidity dependence of the 26-day recurrent cosmic ray decreases: COSPIN/KET results. Journal of Geophysical Research, 1999, 104, 28241-28247.	3.3	32
75	The Solar Origin of Corotating Interaction Regions and their Formation in the Inner Heliosphere. Space Sciences Series of ISSI, 1999, , 141-178.	0.0	4