Jeffrey A Hutchings

List of Publications by Year in descending order

[^0]

Incorporating intra-annual variability in fisheries abundance data to better capture population
dynamics. Fisheries Research, 2022, 246, 106152.

Lobster reserves as a management tool in coastal waters: Two decades of experience in Norway. Marine Policy, 2022, 136, 104908.

Tensions in the communication of science advice on fish and fisheries: northern cod, species at risk, sustainable seafood. ICES Journal of Marine Science, 2022, 79, 308-318.

4 Allee effects and the Allee-effect zone in northwest Atlantic cod. Biology Letters, 2022, 18, 20210439.
2.3

The interactive effects of temperature and food consumption on growth of larval Arctic cod
(<i>Boreogadus saida</i>). Elementa, 2022, 9, .

Salmon lice in the Pacific Ocean show evidence of evolved resistance to parasiticide treatment.
Scientific Reports, 2022, 12, 4775.
3.3

Combining population genomics with demographic analyses highlights habitat patchiness and larval
7 dispersal as determinants of connectivity in coastal fish species. Molecular Ecology, 2022, 31,
2562-2577.

8 Genomic reaction norms inform predictions of plastic and adaptive responses to climate change.
Journal of Animal Ecology, 2022, 91, 1073-1087.

Gill area explains deviations from body size â€ometabolic rate relationship in teleost fishes. Journal of
Fish Biology, 2022, , .

Thermal variability during ectotherm egg incubation: A synthesis and framework. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, 335, 59-71.

11 Explicit incorporation of spatial variability in a biomass dynamics assessment model. ICES Journal of
Marine Science, 2021, 78, 3265-3280.

Throwing down a genomic gauntlet on fisheries-induced evolution. Proceedings of the National
12 Academy of Sciences of the United States of America, 2021, 118, .
7.1

14

Corrigendum to: When phenotypes fail to illuminate underlying genetic processes in fish and fisheries
science. ICES Journal of Marine Science, 2021, $78,1554-1554$.

Multipleâ€batch spawning as a betâ€hedging strategy in highly stochastic environments: An exploratory analysis of Atlantic cod. Evolutionary Applications, 2021, 14, 1980-1992.
3.1

13
2.5

0

Trends in marine survival of Atlantic salmon populations in eastern Canada. ICES Journal of Marine
Science, 2021, 78, 2460-2473.

Five centuries of cod catches in Eastern Canada. ICES Journal of Marine Science, 2021, 78, 2675-2683.
2.5

12

Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses
to Environmental Change. Journal of Heredity, 2020, 111, 319-332.
2.4

36
Increasing temperatures accentuate negative fitness consequences of a marine parasite. Scientific
Reports, 2020, 10, 18467.

Estimating marine survival of Atlantic salmon using an inverse matrix approach. PLoS ONE, 2020, 15, e0232407.
2.5

5

Implications of fisheriesâ€induced evolution for population recovery: Refocusing the science and
5.3
refining its communication. Fish and Fisheries, 2020, 21, 453-464.
29

22 A Brief History of Fisheries in Canada. Fisheries, 2020, 45, 303-318.
0.8

18
23

24 Sustaining Canadian marine biodiversity: Policy and statutory progress. Facets, 2020, 5, 264-288.
2.4

8
$25 \quad$ Disentangling conditional effects of multiple regime shifts on Atlantic cod productivity. PLoS ONE,
$2020,15, \mathrm{e} 0237414$.

Cyclical and stochastic thermal variability affects survival and growth in brook trout. Journal of Thermal Biology, 2019, 84, 221-227.

The role of fish life histories in allometrically scaled foodâ€web dynamics. Ecology and Evolution, 2019,
27 9, 3651-3660.

Life-history variability and conservation status of landlocked Atlantic salmon: an overview. Canadian
Journal of Fisheries and Aquatic Sciences, 2019, 76, 1697-1708.
1.4

42
29 When phenotypes fail to illuminate underlying genetic processes in fish and fisheries science. ICES Journal of Marine Science, 2019, 76, 999-1006.
2.5 11Impediments to fisheries recovery in Canada: Policy and institutional constraints on developing3.211management practices compliant with the precautionary approach. Marine Policy, 2020, 121, 104161.
A genetic comparison of sympatric anadromous and resident Atlantic salmon. Ecology of Freshwater
Fish, 2016, 25, 307-317.
Influence of dams on population persistence in Atlantic salmon (<i>Salmo</i> <i> salar</i>). Canadian
Journal of Zoology, 2016, 94, 329-338.

43
Genetic variation in plasticity of life-history traits between Atlantic cod (<i>Gadus morhua< i\rangle) populations exposed to contrasting thermal regimes. Canadian Journal of Zoology, 2016, 94, 257-264.
$45 \quad$ Communication of Science Advice to Government. Trends in Ecology and Evolution, 2016, 31, 7-11.
Genetic variation in plasticity of life-history traits between Atlantic cod (<i>Gadus morhua</i>)
Variation in spawning time promotes genetic variability in population responses to environmental Variation in spawning time promotes genetic
change in a marine fish. , 2015, 3, cov027..

```4
```8.7
27
The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass. PLoS ONE, 2.5 27 2015, 10, e0120500.
1.0 17Comparative analysis of abundanceâ€"occupancy relationships for species at risk at both broadtaxonomic and spatial scales. Canadian Journal of Zoology, 2015, 93, 515-519.Maternal age effects on Atlantic cod recruitment and implications for future population trajectories.
 Aquatic Sciences, 2015, 72, 1138-1145.

Temporal correlations in population trends: Conservation implications from time-series analysis of

64 Allee Effect and the Uncertainty of Population Recovery. Conservation Biology, 2014, 28, 790-798.

4.7
Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish.
Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140370.

Ghosts of fisheries-induced depletions: do they haunt us still?. ICES Journal of Marine Science, 2014, 71,
1467-1473.
\(2.5 \quad 9\)

Increased natural mortality at low abundance can generate an Allee effect in a marine fish. Royal
2.4

21
Society Open Science, 2014, 1, 140075.

Long Distance Linkage Disequilibrium and Limited Hybridization Suggest Cryptic Speciation in Atlantic
Cod. PLoS ONE, 2014, 9, el06380.
2.5

37

Genomic islands of divergence and their consequences for the resolution of spatial structure in an
3.1

136
exploited marine fish. Evolutionary Applications, 2013, 6, 450-461.

The relationship between offspring size and fitness: integrating theory and empiricism. Ecology, 2013, 94, 315-324.
73 Resilience and Recovery of Overexploited Marine Populations. Science, 2013, 340, 347-349. 12.6 199
74 Gutting Canada's Fisheries Act: No Fishery, No Fish Habitat Protection. Fisheries, 2013, 38, 497-501. 0.8 63
Cimate change, isheries, and aquaculture: trenas and consequences tor Canadran marim
biodiversity < sup > \(1</\) sup This manuscript is a companion paper to Vander Zwaag et al. 4.5 20
Canadaâ€ \({ }^{T M}\) s international and national commitments to sustain marine biodiversity¹This manuscript is a companion paper to Hutchings et al. (doi:10.1139/a2012-011) and Hutchings et al.
(doi:10.1139/er-2012-0049) also appearing in this issue. These three papers comprise an edited version of a 4.5
February 2012 Royal Society of Canada Expert Panel Report.. Environmental Reviews, 2012, 20, 312-352.
77 Increasing biological realism of fisheries stock assessment: towards hierarchical Bayesian methods. 4.5 45
Environmental Reviews, 2012, 20, 135-151.Is Canada fulfilling its obligations to sustain marine biodiversity? A summary review, conclusions, andrecommendations 1This manuscript is a companion paper to Hutchings et al. (doi:10.1139/a2012-011) and
78 VanderZwaag et al. (doi:10.1139/a2012-013) also appearing in this issue. These three papers comprise an\(4.5 \quad 20\)edited version of a February 2012 Royal Society of Canada Expert Panel Report.. Environmental Reviews,
2012, 20, 353-361.79 Consequences of fisheries-induced evolution for population productivity and recovery potential.79 Consequences of fisheries-induced evolution for population productivity and rec
Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2571-2579.\(2.6 \quad 84\)Red flags: correlates of impaired species recovery. Trends in Ecology and Evolution, 2012, 27, 542-546.8.7
81 Lifeâ€history correlates of extinction risk and recovery potential. Ecological Applications, 2012, 22,
1061-1067.
Concurrent habitat and life history influences on effective/census population size ratios instreamâ€dwelling trout. Ecology and Evolution, 2012, 2, 562-573.
1.9 44
83 Evolutionary and ecological feedbacks of the survival cost of reproduction. Evolutionary
Applications, 2012, 5, 245-255.
3.1 38
84
Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (<i>Salmo) Tj ETQq0 00 rgBT 9 /Overlock 10 Tf
85 biodiversity and management issues, and climate impacts on species at risk and of Canadian importance,
including the polar bear (<i> Ursus maritimus<|i>), Atlantic cod' (<i>Gadus morhua</i>), Piping Plover
(\(\langle i\rangle\) Charadrius melodus \(\langle\mid i\rangle\)), and caribou (\(\langle i\rangle\) Ranøifer tarandus \(\langle\mid i\rangle\)).. Canadian lournal of Zooloov,1.078\(1.0-78\)The Influence of Operational Sex Ratio on the Intensity of Competition for Mates. American Naturalist,2011, 177, 167-176.

91 Old wine in new bottles: reaction norms in salmonid fishes. Heredity, 2011, 106, 421-437. 2.6

92 Hybridization effects on phenotypic plasticity: experimental compensatory growth in farmedâ \(€\) wild
3.1

Reduced anti-predator responses in multi-generational hybrids of farmed and wild Atlantic salmon (Salmo salar L.). Conservation Genetics, 2010, 11, 785-794.
99 \begin{tabular}{l}
Aspects of the ecology and life history of Alligatorfish Aspidophoroides monopterygius. \\
Environmental Biology of Fishes, 2010, 87, 353-362.
\end{tabular}
\(100 \quad\)\begin{tabular}{l}
Shifting reproductive success in a shoal of Atlantic Cod, Gadus morhua L.. Environmental Biology \\
Fishes, 2010, 88, 311-318.
\end{tabular}
\(101 \quad\)\begin{tabular}{l}
Patterns of Aggression and Operational Sex Ratio Within Alternative Male Phenotypes in Atlantic \\
Salmon. Ethology, 2010, 116, 166-175.
\end{tabular}

Patterns of Aggression and Operational Sex Ratio Within Alternative Male Phenotypes in Atlantic

Fitness-related consequences of competitive interactions between farmed and wild Atlantic salmon at
102 different proportional representations of wildâ€"farmed hybrids. ICES Journal of Marine Science, 2010,
2.5

35 67, 657-667.

103 Consequences of farmedâ \(€^{\text {" }}\) wild hybridization across divergent wild populations and multiple traits in salmon. Ecological Applications, 2010, 20, 935-953.

Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3725-3734.
2.6

206

Potential for domesticatedâ€"wild interbreeding to induce maladaptive phenology across multiple
105 populations of wild Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic
1.4

35
Sciences, 2010, 67, 1768-1775.

106 Evolutionary ecology at the extremes of speciesâ€ \({ }^{\text {TM }}\) ranges. Environmental Reviews, 2010, 18, 1-20.
4.5

176

\footnotetext{
107 A cost of reproduction in male Atlantic cod (GadusÂmorhua). Canadian Journal of Zoology, 2010, 88,
595-600.
}
1.0

9
Canadian species at risk (2006â€"2008), with particular emphasis on fishes. Environmental Reviews, 2009 ,
\(17,53-65\).

Populationâ€specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evolutionary Applications, 2009, 2, 489-503.
3.1

40

Differences in pathogen resistance within and among cultured, conservation-dependent, and
112 endangered populations of Atlantic salmon, Salmo salar L.. Environmental Biology of Fishes, 2009, 84, 69-78.

Genetic variability in reaction norms between farmed and wild backcrosses of Atlantic salmon (Salmo) Tj ETQq1 10.784314 rợ

Scientific advice on species at risk: a comparative analysis of status assessments of polar bear, <i>Ursus maritimus</i>. Environmental Reviews, 2009, 17, 45-51.
4.5

16
```

115 Diffusion of American lobster (Homarus americanus) in Northumberland Strait, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 659-671.

```
\(1.4 \quad 7\)

116 Rebuilding Global Fisheries. Science, 2009, 325, 578-585.

Prevalence and recurrence of escaped farmed Atlantic salmon (Salmo salar) in eastern North American rivers. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2807-2826.

Stock structure and seasonal distribution patterns of American lobster, Homarus americanus,
1.7

10

Ransom Aldrich Myers (1952-2007): In memoriam. Canadian Journal of Fisheries and Aquatic Sciences,
2008, 65, vii-xii.

Genetic variation in life-history reaction norms in a marine fish. Proceedings of the Royal Society B:
Divergent compensatory growth responses within species: linked to contrasting migrations in
salmon?. Oecologia, 2007, 153, 543-553.
\(2.0 \quad 38\)
The effects of isolation and colonization history on the genetic structure of marine-relict
133 populations of Atlantic cod (Gadus morhua) in the Canadian Arctic. Canadian Journal of Fisheries and 1.4 Aquatic Sciences, 2006, 63, 1830-1839.
134 Genetic and environmental components of phenotypic variation in body shape among populations ofAtlantic cod (Gadus morhua L.). Biological Journal of the Linnean Society, 2006, 88, 351-365.
135 Survival consequences of sex-biased growth and the absence of a growth-mortality trade-off. Functional Ecology, 2006, 20, 347-353.
Countergradient variation in body shape between two populations of Atlantic cod (Gadus morhua). Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 217-223.
137 Sound Production by
77
138 Measuring marine fish biodiversity: temporal changes in abundance, life history and demography.Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 315-338.4.0169Biology of extinction risk in marine fishes. Proceedings of the Royal Society B: Biological Sciences,2.6335
139 2005, 272, 2337-2344.0.729
140 Development and International Law, 2005, 36, 219-259.Canada's Marine Species at Risk: Science and Law at the Helm, but a Sea of Uncertainties. Ocean
Testing hypotheses about fecundity, body size and maternal condition in fishes. Fish and Fisheries,
\(2004,5,120-130\).

Dominance relationships and behavioural correlates of individual spawning success in farmed and wild male Atlantic salmon, Salmo salar. Journal of Animal Ecology, 2004, 73, 1069-1079.
2.8

70
\begin{tabular}{|c|c|c|c|}
\hline 147 & The cod that got away. Nature, 2004, 428, 899-900. & 27.8 & 53 \\
\hline 148 & The function of sound production by Atlantic cod as inferred from patterns of variation in drumming muscle mass. Canadian Journal of Zoology, 2004, 82, 1391-1398. & 1.0 & 52 \\
\hline 149 & Marine Fish Population Collapses: Consequences for Recovery and Extinction Risk. BioScience, 2004, 54, 297. & 4.9 & 515 \\
\hline 150 & Mating systems and the conservation of commercially exploited marine fish. Trends in Ecology and Evolution, 2003, 18, 567-572. & 8.7 & 218 \\
\hline 151 & Small-scale temporal and spatial variation in Atlantic cod (Gadus morhua) life history. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 1111-1121. & 1.4 & 56 \\
\hline
\end{tabular}

152 INDIVIDUAL VARIATION IN ATLANTIC SALMON FERTILIZATION SUCCESS: IMPLICATIONS FOR EFFECTIVE POPULATION SIZE. , 2002, 12, 184-193.

70
153 Sexâ€"biased dispersal in a salmonid fish. Proceedings of the Royal Society B: Biological Sciences, 2002, \(269,2487-2493\).

154 Stock, Recruitment and Reference Points: Assessment and Management of Atlantic Salmon (Hydrobiologie et Aquaculture series). Fish and Fisheries, 2002, 3, 55-56.
155 \begin{tabular}{l}
Conservation biology of marine fishes: perceptions and caveats regarding assignment of extinction \\
risk. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 108-121.
\end{tabular}\(\quad\)\begin{tabular}{l}
The influence of male parr body size and mate competition on fertilization success and effective \\
population size in Atlantic salmon. Heredity, 2001, 86, 675-684.
\end{tabular}\(\quad\)\begin{tabular}{l}
59
\end{tabular}

158 Influence of population decline, fishing, and spawner variability on the recovery of marine fishes. Journal of Fish Biology, 2001, 59, 306-322.
1.6

9
The influence of male parr body size and mate competition on fertilization success and effective
population size in Atlantic salmon. Heredity, 2001, 86, 675-684. \begin{tabular}{l}
Conservation biology of marine fishes: perceptions and caveats regarding assignment of eÃ-tinction \\
\(160 \quad\)\begin{tabular}{l}
risk. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 108-121.
\end{tabular} \\
\(161 \quad\) Collapse and recovery of marine fishes. Nature, \(2000,406,882-885\).
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 165 & Fisheries assessment: what can be learned from interviewing resource users?. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1949-1963. & 1.4 & 275 \\
\hline 166 & Life history variation and growth rate thresholds for maturity in Atlantic salmon, <i>Salmo salar</i>. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 22-47. & 1.4 & 279 \\
\hline 167 & A framework for understanding Atlantic salmon (Salmo salar) life history. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 48-58. & 1.4 & 51 \\
\hline
\end{tabular}
169 Is scientific inquiry incompatible with government info1.4121
170 Life history responses to environmental variability in early life. , 1997, , 139-168.15
171 WHY DO FISH STOCKS COLLAPSE? THE EXAMPLE OF COD IN ATLANTIC CANADA. , 1997, \(7,91\). 3
172 Why do Fish Stocks Collapse? The Example of Cod in Atlantic Canada. , 1997, 7, 91. 7
\(\left.\begin{array}{lll}\text { Spatial and temporal variation in the density of northern cod and a review of hypotheses for the } \\
\text { stock's collapse. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 943-962. }\end{array}\right]\)\begin{tabular}{l}
1.4
\end{tabular}12.6407
177 Age- and Size-Specific Costs of Reproduction within Populations of Brook Trout, Salvelinus 2.7 76
fontinalis. Oikos, 1994, 70, 12.1.2175
The evolution of alternative mating strategies in variable environments. Evolutionary Ecology, 1994, 8,
181
Geographic Variation in the Spawning of Atlantic Cod，Gadus morhua，in the Northwest Atlantic．
Canadian Journal of Fisheries and Aquatic Sciences，1993，50，2457－2467．
1.4

90

Behavioural implications of intraspecific life history variation．Marine and Freshwater Behaviour and
\(0.9 \quad 8\) Physiology，1993，23，187－203．
\begin{tabular}{|c|c|c|c|}
\hline 183 & Effect of Age on the Seasonality of Maturation and Spawning of Atlantic Cod，＜i＞Gadus morhua＜ 1 i\(\rangle\) ，in the Northwest Atlantic．Canadian Journal of Fisheries and Aquatic Sciences，1993，50，2468－2474． & 1.4 & 136 \\
\hline 184 & The independence of enzyme heterozygosity and life－history traits in natural populations of Salvelinus fontinalis（brook trout）．Heredity，1992，69，496－502． & 2.6 & 13 \\
\hline 185 & Fitness Consequences of Variation in Egg Size and Food Abundance in Brook Trout Salvelinus fontinalis．Evolution；International Journal of Organic Evolution，1991，45， 1162. & 2.3 & 127 \\
\hline 186 & The threat of extinction to native populations experiencing spawning intrusions by cultured Atlantic salmon．Aquaculture，1991，98，119－132． & 3.5 & 58 \\
\hline 187 & FITNESS CONSEQUENCES OF VARIATION IN EGG SIZE AND FOOD ABUNDANCE IN BROOK TROUT ＜i＞SALVELINUS FONTINALIS＜｜i＞．Evolution；International Journal of Organic Evolution，1991，45， 1162－1168． & 2.3 & 186 \\
\hline
\end{tabular}

\section*{188 A Spurious Correlation in an Interpopulation Comparison of Atlantic Salmon Life Histories．Ecology，} 1987，68，1839－1843．
\(3.2 \quad 15\)
\begin{tabular}{|c|c|c|c|}
\hline 189 & Escalation of an asymmetric contest：mortality resulting from mate competition in Atlantic salmon， ＜i＞Salmo salar＜｜i＞．Canadian Journal of Zoology，1987，65，766－768． & 1.0 & 46 \\
\hline 190 & Lakeward Migrations by Juvenile Atlantic Salmon，〈i＞Salmo salar＜li〉．Canadian Journal of Fisheries and Aquatic Sciences，1986，43，732－741． & 1.4 & 105 \\
\hline 191 & Selection against parr maturation in Atlantic salmon．Aquaculture，1986，53，313－320． & 3.5 & 26 \\
\hline 192 & Variation in Male Parr Maturation Within and Among Populations of Atlantic Salmon，〈i〉Salmo salar＜／i＞．Canadian Journal of Fisheries and Aquatic Sciences，1986，43，1242－1248． & 1.4 & 158 \\
\hline 193 & The Influence of Phylogeny，Size and Behaviour on Patterns of Covariation in Salmonid Life Histories． Oikos，1985，45， 118. & 2.7 & 92 \\
\hline
\end{tabular}

The influence of ocean warming on the natural mortality of marine fishes．Environmental Biology of
5```

[^0]: Source: https:/|exaly.com/author-pdf/7933951/publications.pdf
 Version: 2024-02-01

