
Tasuku Ueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793315/publications.pdf Version: 2024-02-01

TASUKU LIENO

#	Article	IF	CITATIONS
1	Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes. Journal of the American Chemical Society, 2005, 127, 4888-4894.	13.7	637
2	Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide. Journal of the American Chemical Society, 2011, 133, 18003-18005.	13.7	614
3	Fluorescent probes for sensing and imaging. Nature Methods, 2011, 8, 642-645.	19.0	544
4	Mechanism-Based Molecular Design of Highly Selective Fluorescence Probes for Nitrative Stress. Journal of the American Chemical Society, 2006, 128, 10640-10641.	13.7	324
5	Rational Principles for Modulating Fluorescence Properties of Fluorescein. Journal of the American Chemical Society, 2004, 126, 14079-14085.	13.7	314
6	Development of Azoâ€Based Fluorescent Probes to Detect Different Levels of Hypoxia. Angewandte Chemie - International Edition, 2013, 52, 13028-13032.	13.8	241
7	Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. Journal of the American Chemical Society, 2017, 139, 13713-13719.	13.7	206
8	Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nature Chemical Biology, 2012, 8, 465-470.	8.0	183
9	Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging. Journal of the American Chemical Society, 2011, 133, 14157-14159.	13.7	176
10	Organelle-specific, rapid induction of molecular activities and membrane tethering. Nature Methods, 2010, 7, 206-208.	19.0	141
11	Highly Activatable and Rapidly Releasable Caged Fluorescein Derivatives. Journal of the American Chemical Society, 2007, 129, 6696-6697.	13.7	131
12	A Photocleavable Rapamycin Conjugate for Spatiotemporal Control of Small GTPase Activity. Journal of the American Chemical Society, 2011, 133, 12-14.	13.7	128
13	An Activatable Photosensitizer Targeted to γâ€Glutamyltranspeptidase. Angewandte Chemie - International Edition, 2017, 56, 10418-10422.	13.8	127
14	Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Analytical and Bioanalytical Chemistry, 2006, 386, 621-626.	3.7	123
15	Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples. Journal of the American Chemical Society, 2018, 140, 5925-5933.	13.7	115
16	Reversible Off–On Fluorescence Probe for Hypoxia and Imaging of Hypoxia–Normoxia Cycles in Live Cells. Journal of the American Chemical Society, 2012, 134, 19588-19591.	13.7	110
17	Development of a Series of Near-Infrared Dark Quenchers Based on Si-rhodamines and Their Application to Fluorescent Probes. Journal of the American Chemical Society, 2015, 137, 4759-4765.	13.7	109
18	Design and Synthesis of an Enzyme Activity-Based Labeling Molecule with Fluorescence Spectral Change. Journal of the American Chemical Society, 2006, 128, 15946-15947.	13.7	104

ΤΑЅԱΚΉ ЦЕΝΟ

#	Article	IF	CITATIONS
19	Selective Ablation of βâ€Galactosidaseâ€Expressing Cells with a Rationally Designed Activatable Photosensitizer. Angewandte Chemie - International Edition, 2014, 53, 6772-6775.	13.8	102
20	Boron Dipyrromethene As a Fluorescent Caging Group for Single-Photon Uncaging with Long-Wavelength Visible Light. ACS Chemical Biology, 2014, 9, 2242-2246.	3.4	87
21	Compartmentalized AMPK Signaling Illuminated by Genetically Encoded Molecular Sensors and Actuators. Cell Reports, 2015, 11, 657-670.	6.4	83
22	Gliotoxin Suppresses NF-κB Activation by Selectively Inhibiting Linear Ubiquitin Chain Assembly Complex (LUBAC). ACS Chemical Biology, 2015, 10, 675-681.	3.4	77
23	A Waterâ€Soluble Mechanochromic Luminescent Pyrene Derivative Exhibiting Recovery of the Initial Photoluminescence Color in a Highâ€Humidity Environment. Advanced Functional Materials, 2013, 23, 5277-5284.	14.9	76
24	Covalent Attachment of Mechanoresponsive Luminescent Micelles to Glasses and Polymers in Aqueous Conditions. Journal of the American Chemical Society, 2014, 136, 4273-4280.	13.7	74
25	Discovery and Mechanistic Characterization of Selective Inhibitors of H2S-producing Enzyme: 3-Mercaptopyruvate Sulfurtransferase (3MST) Targeting Active-site Cysteine Persulfide. Scientific Reports, 2017, 7, 40227.	3.3	73
26	Red Fluorescent Probe for Monitoring the Dynamics of Cytoplasmic Calcium Ions. Angewandte Chemie - International Edition, 2013, 52, 3874-3877.	13.8	71
27	Development of a reversible fluorescent probe for reactive sulfur species, sulfane sulfur, and its biological application. Chemical Communications, 2017, 53, 1064-1067.	4.1	70
28	New Class of Bioluminogenic Probe Based on Bioluminescent Enzyme-Induced Electron Transfer: BioLeT. Journal of the American Chemical Society, 2015, 137, 4010-4013.	13.7	63
29	Development of Luciferin Analogues Bearing an Amino Group and Their Application as BRET Donors. Chemistry - an Asian Journal, 2010, 5, 2053-2061.	3.3	62
30	Synthetic spatially graded Rac activation drives cell polarization and movement. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3668-77.	7.1	60
31	Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats. Angewandte Chemie - International Edition, 2015, 54, 14768-14771.	13.8	57
32	Creation of Superior Carboxyfluorescein Dyes by Blocking Donor-Excited Photoinduced Electron Transfer. Organic Letters, 2006, 8, 5963-5966.	4.6	55
33	Establishment of Molecular Design Strategy To Obtain Activatable Fluorescent Probes for Carboxypeptidases. Journal of the American Chemical Society, 2018, 140, 1767-1773.	13.7	55
34	Rational design of boron dipyrromethene (BODIPY)-based photobleaching-resistant fluorophores applicable to a protein dynamics study. Chemical Communications, 2011, 47, 10055.	4.1	54
35	Protein-Coupled Fluorescent Probe To Visualize Potassium Ion Transition on Cellular Membranes. Analytical Chemistry, 2016, 88, 2693-2700.	6.5	54
36	Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization. Science Signaling, 2011, 4, ra87.	3.6	49

ΤΑЅԱΚΉ ЦЕΝΟ

#	Article	IF	CITATIONS
37	Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein and Its Application to Develop a Scaffold for Red Fluorescent Probes. Analytical Chemistry, 2015, 87, 9061-9069.	6.5	49
38	Development of hypoxia-sensitive Gd3+-based MRI contrast agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2798-2802.	2.2	47
39	Red fluorescent scaffold for highly sensitive protease activity probes. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3908-3911.	2.2	44
40	A Fluorescent Probe for Rapid, Highâ€Contrast Visualization of Folateâ€Receptorâ€Expressing Tumors Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 6015-6020.	13.8	41
41	Redâ€5hifted Fluorogenic Substrate for Detection of <i>lac</i> Zâ€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie - International Edition, 2018, 57, 15702-15706.	13.8	38
42	Design and Synthesis of an Activatable Photoacoustic Probe for Hypochlorous Acid. Analytical Chemistry, 2019, 91, 9086-9092.	6.5	37
43	Synthesis of unsymmetrical Si-rhodamine fluorophores and application to a far-red to near-infrared fluorescence probe for hypoxia. Chemical Communications, 2018, 54, 6939-6942.	4.1	36
44	Development of an Azoreductase-based Reporter System with Synthetic Fluorogenic Substrates. ACS Chemical Biology, 2017, 12, 558-563.	3.4	33
45	Thermal or Mechanical Stimuliâ€Induced Photoluminescence Color Change of a Molecular Assembly Composed of an Amphiphilic Anthracene Derivative in Water. Chemistry - A European Journal, 2014, 20, 10397-10403.	3.3	32
46	Diced Electrophoresis Gel Assay for Screening Enzymes with Specified Activities. Journal of the American Chemical Society, 2013, 135, 6002-6005.	13.7	31
47	Bin/Amphiphysin/Rvs (BAR) family members bend membranes in cells. Scientific Reports, 2014, 4, 4693.	3.3	25
48	Red Fluorescence Probe Targeted to Dipeptidylpeptidase-IV for Highly Sensitive Detection of Esophageal Cancer. Bioconjugate Chemistry, 2019, 30, 1055-1060.	3.6	25
49	Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Cell Calcium, 2016, 60, 256-265.	2.4	24
50	Design of spontaneously blinking fluorophores for live-cell super-resolution imaging based on quantum-chemical calculations. Chemical Communications, 2020, 56, 13173-13176.	4.1	24
51	TokyoGreen derivatives as specific and practical fluorescent probes for UDP-glucuronosyltransferase (UGT) 1A1. Chemical Communications, 2013, 49, 3101.	4.1	23
52	Detection of NAD(P)H-dependent enzyme activity with dynamic luminescence quenching of terbium complexes. Chemical Communications, 2015, 51, 8319-8322.	4.1	22
53	Artificial Ligands of Streptavidin (ALiS): Discovery, Characterization, and Application for Reversible Control of Intracellular Protein Transport. Journal of the American Chemical Society, 2015, 137, 10464-10467.	13.7	22
54	ldentification of Tissue-Restricted Bioreaction Suitable for in Vivo Targeting by Fluorescent Substrate Library-Based Enzyme Discovery. Journal of the American Chemical Society, 2015, 137, 12187-12190.	13.7	20

ΤΑSUKU ÜENO

#	Article	IF	CITATIONS
55	Discovery of Cell-Type-Specific and Disease-Related Enzymatic Activity Changes via Global Evaluation of Peptide Metabolism. Journal of the American Chemical Society, 2017, 139, 3465-3472.	13.7	17
56	Unexpected Photoâ€instability of 2,6‣ulfonamide‣ubstituted BODIPYs and Its Application to Caged GABA. ChemBioChem, 2016, 17, 1233-1240.	2.6	16
57	Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology. Science Signaling, 2016, 9, re1.	3.6	16
58	Rapid detection of metastatic lymph nodes of colorectal cancer with a gamma-glutamyl transpeptidase-activatable fluorescence probe. Scientific Reports, 2018, 8, 17781.	3.3	15
59	Rational Design of a Nearâ€infrared Fluorescence Probe for Ca ²⁺ Based on Phosphorusâ€substituted Rhodamines Utilizing Photoinduced Electron Transfer. Chemistry - an Asian Journal, 2020, 15, 524-530.	3.3	14
60	Nongenetic control of receptor signaling dynamics using a DNA-based optochemical tool. Chemical Communications, 2021, 57, 5969-5972.	4.1	14
61	Development of a fluorescent probe library enabling efficient screening of tumour-imaging probes based on discovery of biomarker enzymatic activities. Chemical Science, 2022, 13, 4474-4481.	7.4	14
62	Rapidly rendering cells phagocytic through a cell surface display technique and concurrent Rac activation. Science Signaling, 2014, 7, rs4.	3.6	13
63	A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques. Organic and Biomolecular Chemistry, 2014, 12, 8611-8618.	2.8	13
64	Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3464-3467.	2.2	13
65	A protein-coupled fluorescent probe for organelle-specific imaging of Na+. Sensors and Actuators B: Chemical, 2018, 265, 575-581.	7.8	12
66	Development of Chemical Tools to Monitor and Control Isoaspartyl Peptide Methyltransferase Activity. Angewandte Chemie - International Edition, 2017, 56, 153-157.	13.8	11
67	A cytosolically localized far-red to near-infrared rhodamine-based fluorescent probe for calcium ions. Analyst, The, 2020, 145, 7736-7740.	3.5	11
68	Antibody Clicking as a Strategy to Modify Antibody Functionalities on the Surface of Targeted Cells. Journal of the American Chemical Society, 2020, 142, 15644-15648.	13.7	11
69	Selective Twoâ€6tep Labeling of Proteins with an Off/On Fluorescent Probe. Chemistry - A European Journal, 2011, 17, 14763-14771.	3.3	10
70	Metabolic-Pathway-Oriented Screening Targeting S-Adenosyl-I-methionine Reveals the Epigenetic Remodeling Activities of Naturally Occurring Catechols. Journal of the American Chemical Society, 2020, 142, 21-26.	13.7	10
71	Amino BODIPY-Based Blue Fluorescent Probes for Aldehyde Dehydrogenase 1-Expressing Cells. Bioconjugate Chemistry, 2021, 32, 234-238.	3.6	10
72	Discovery of an F-actin–binding small molecule serving as a fluorescent probe and a scaffold for functional probes. Science Advances, 2021, 7, eabg8585.	10.3	10

ΤΑЅԱΚΉ ЦЕΝΟ

#	Article	IF	CITATIONS
73	Development of ratiometric carbohydrate sensor based on boron dipyrromethene (BODIPY) scaffold. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126684.	2.2	9
74	Detection of NAD(P)H-dependent enzyme activity by time-domain ratiometry of terbium luminescence. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2314-2317.	2.2	8
75	Development of Highly Selective Fluorescent Probe Enabling Flow-Cytometric Isolation of ALDH3A1-Positive Viable Cells. Bioconjugate Chemistry, 2017, 28, 302-306.	3.6	8
76	Manipulating Cellular Activities Using an Ultrasound–Chemical Hybrid Tool. ACS Synthetic Biology, 2017, 6, 2021-2027.	3.8	8
77	Spatio-Temporal Manipulation of Small GTPase Activity at Subcellular Level and on Timescale of Seconds in Living Cells. Journal of Visualized Experiments, 2012, , .	0.3	7
78	Discovery of a pyruvylated peptide-metabolizing enzyme using a fluorescent substrate-based protein discovery technique. Chemical Communications, 2016, 52, 4377-4380.	4.1	7
79	Redâ€Shifted Fluorogenic Substrate for Detection of lac Zâ€Positive Cells in Living Tissue with Single ell Resolution. Angewandte Chemie, 2018, 130, 15928-15932.	2.0	7
80	Fluorometric assay of integrin activity with a small-molecular probe that senses the binding site microenvironment. Chemical Communications, 2014, 50, 15894-15896.	4.1	6
81	Identification of Lung Inflammation-Related Elevation of Acylamino Acid Releasing Enzyme (APEH) Activity Using an Enzymomics Approach. Chemical and Pharmaceutical Bulletin, 2016, 64, 1533-1538.	1.3	5
82	Molecular design of near-infrared (NIR) fluorescent probes targeting exopeptidase and application for detection of dipeptidyl peptidase 4 (DPP-4) activity. RSC Chemical Biology, 2022, 3, 859-867.	4.1	5
83	Separation-Based Enzymomics Assay for the Discovery of Altered Peptide-Metabolizing Enzymatic Activities in Biosamples. Analytical Chemistry, 2019, 91, 11497-11501.	6.5	4
84	Establishment of live-cell-based coupled assay system for identification of compounds to modulate metabolic activities of cells. Cell Reports, 2021, 36, 109311.	6.4	4
85	Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119903119.	7.1	3
86	Development of a platform for activatable fluorescent substrates of glucose transporters (GLUTs). Bioorganic and Medicinal Chemistry, 2019, 27, 2122-2126.	3.0	2
87	Zero temperature coefficient characteristic of four-corner-truncated square quartz resonator supported at four nodal points in Lamé mode. , 2010, , .		1
88	Bin/Amphiphysin/Rvs (BAR) Family Members Bend Membranes in Cells. Biophysical Journal, 2015, 108, 244a.	0.5	1
89	Development of Chemical Tools to Monitor and Control Isoaspartyl Peptide Methyltransferase Activity. Angewandte Chemie, 2017, 129, 159-163.	2.0	1
90	Synthesis of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Data in Brief, 2017, 12, 351-357.	1.0	1