
Carmen Mora-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7933039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic Patient-Reported Outcomes in Nephrology: Focus on Hemodialysis. Journal of Clinical Medicine, 2022, 11, 861.	1.0	1
2	Klotho expression in peripheral blood circulating cells is associated with vascular and systemic inflammation in atherosclerotic vascular disease. Scientific Reports, 2022, 12, 8422.	1.6	22
3	Repurposing drugs for highly prevalent diseases: pentoxifylline, an old drug and a new opportunity for diabetic kidney disease. CKJ: Clinical Kidney Journal, 2022, 15, 2200-2213.	1.4	3
4	Serum urate is related to subclinical inflammation in asymptomatic hyperuricaemia. Rheumatology, 2021, 60, 371-379.	0.9	21
5	MO440KLOTHO AS A BIOMARKER OF SUBCLINICAL CARDIOVASCULAR DISEASE IN CHRONIC KIDNEY DISEASE: A PROOF-OF-CONCEPT STUDY*. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	Ο
6	MO037EPIGENETIC REGULATION OF KLOTHO IN PERIPHERAL BLOOD CIRCULATING CELLS IS ASSOCIATED CELLS IS ASSOCIATED WITH SOLUBLE PROTEIN SERUM IN CARDIOVASCULAR DISEASE. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
7	MO031 <i>KLOTHO</i> GENE PROMOTER METHYLATION IN THE VASCULATURE IS RELATED TO INFLAMMATION IN HUMAN ATHEROSCLEROSIS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	Ο
8	MO453SERUM AND VASCULAR FIBROBLAST GROWTH FACTOR 23 (FGF23) ARE ASSOCIATED WITH VASCULAR CALCIFICATION. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
9	Pathophysiological Implications of Imbalances in Fibroblast Growth Factor 23 in the Development of Diabetes. Journal of Clinical Medicine, 2021, 10, 2583.	1.0	9
10	Klotho as a biomarker of subclinical atherosclerosis in patients with moderate to severe chronic kidney disease. Scientific Reports, 2021, 11, 15877.	1.6	17
11	Inflammatory Targets in Diabetic Nephropathy. Journal of Clinical Medicine, 2020, 9, 458.	1.0	109
12	Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Frontiers in Medicine, 2020, 7, 628289.	1.2	39
13	Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: a case-control study. Aging, 2020, 12, 1952-1964.	1.4	35
14	Pentoxifylline for Renal Protection in Diabetic Kidney Disease. A Model of Old Drugs for New Horizons. Journal of Clinical Medicine, 2019, 8, 287.	1.0	40
15	FGF23 and Klotho Levels are Independently Associated with Diabetic Foot Syndrome in Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 448.	1.0	15
16	Inflammation in Diabetic Kidney Disease. Nephron, 2019, 143, 12-16.	0.9	164
17	Fibroblast growth factor 23 expression in human calcified vascular tissues. Aging, 2019, 11, 7899-7913.	1.4	23
18	Effects of Pentoxifylline on Soluble Klotho Concentrations and Renal Tubular Cell Expression in Diabetic Kidney Disease. Diabetes Care, 2018, 41, 1817-1820.	4.3	60

#	Article	IF	CITATIONS
19	Perfil antiinflamatorio del paricalcitol en el receptor de trasplante renal. Nefrologia, 2017, 37, 622-629.	0.2	4
20	Soluble levels and endogenous vascular gene expression of <i>KLOTHO</i> are related to inflammation in human atherosclerotic disease. Clinical Science, 2017, 131, 2601-2609.	1.8	37
21	Anti-inflammatory profile of paricalcitol in kidney transplant recipients. Nefrologia, 2017, 37, 622-629.	0.2	1
22	Influence of Klotho gene polymorphisms on vascular gene expression and its relationship to cardiovascular disease. Journal of Cellular and Molecular Medicine, 2016, 20, 128-133.	1.6	32
23	Effect of Paricalcitol on FGF-23 and Klotho in Kidney Transplant Recipients. Transplantation, 2016, 100, 2432-2438.	0.5	16
24	Implications of Fibroblast growth factor/Klotho system in glucose metabolism and diabetes. Cytokine and Growth Factor Reviews, 2016, 28, 71-77.	3.2	29
25	Inflammatory Cytokines in Diabetic Nephropathy. Journal of Diabetes Research, 2015, 2015, 1-9.	1.0	202
26	Klotho in cardiovascular disease: Current and future perspectives. World Journal of Biological Chemistry, 2015, 6, 351.	1.7	27
27	Effect of Pentoxifylline on Renal Function and Urinary Albumin Excretion in Patients with Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 220-229.	3.0	432
28	Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart, 2014, 100, 34-40.	1.2	129
29	Pathophysiological Implications of Fibroblast Growth Factor-23 and Klotho and Their Potential Role as Clinical Biomarkers. Clinical Chemistry, 2014, 60, 933-940.	1.5	19
30	Diabetic kidney disease: from physiology to therapeutics. Journal of Physiology, 2014, 592, 3997-4012.	1.3	142
31	Beneficial Effects of Selective Vitamin D Receptor Activation by Paricalcitol in Chronic Kidney Disease. Current Drug Targets, 2014, 15, 703-709.	1.0	6
32	Implications of Klotho in vascular health and disease. World Journal of Cardiology, 2014, 6, 1262.	0.5	45
33	Expression of FGF23/KLOTHO system in human vascular tissue. International Journal of Cardiology, 2013, 165, 179-183.	0.8	89
34	Lanthanum Carbonate Modulates Inflammatory Profile in Hemodialysis Patients: Relationship with Fibroblast Growth Factor-23. European Journal of Inflammation, 2013, 11, 75-86.	0.2	1
35	Antiâ€Inflammatory Profile of Paricalcitol in Hemodialysis Patients: A Prospective, Openâ€Label, Pilot Study. Journal of Clinical Pharmacology, 2013, 53, 421-426.	1.0	27
36	Relationship between inflammation and microalbuminuria in prehypertension. Journal of Human Hypertension, 2013, 27, 119-125.	1.0	22

#	Article	IF	CITATIONS
37	FGF23/Klotho axis: Phosphorus, mineral metabolism and beyond. Cytokine and Growth Factor Reviews, 2012, 23, 37-46.	3.2	37
38	Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Reviews Nephrology, 2011, 7, 327-340.	4.1	845
39	Pentoxifylline for Renoprotection in Diabetic Nephropathy: the PREDIAN study. Rationale and basal results. Journal of Diabetes and Its Complications, 2011, 25, 314-319.	1.2	48
40	Effect of Phosphate Binders on Serum Inflammatory Profile, Soluble CD14, and Endotoxin Levels in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 2272-2279.	2.2	82
41	Inflammatory Pathways. Contributions To Nephrology, 2011, 170, 113-123.	1.1	15
42	Erdheim-Chester disease as cause of end-stage renal failure: a case report and review of the literature. International Urology and Nephrology, 2010, 42, 1107-1112.	0.6	18
43	Serum and Gene Expression Profile of Tumor Necrosis Factor-α and Interleukin-6 in Hypertensive Diabetic Patients: Effect of Amlodipine Administration. International Journal of Immunopathology and Pharmacology, 2010, 23, 51-59.	1.0	25
44	Mineral Metabolism and Inflammation in Chronic Kidney Disease Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1646-1654.	2.2	83
45	<i>Reviews</i> : Clinical Implications of Disordered Magnesium Homeostasis in Chronic Renal Failure and Dialysis. Seminars in Dialysis, 2009, 22, 37-44.	0.7	136
46	Tumor necrosis factor-α as a therapeutic target for diabetic nephropathy. Cytokine and Growth Factor Reviews, 2009, 20, 165-173.	3.2	71
47	Pathogenic perspectives for the role of inflammation in diabetic nephropathy. Clinical Science, 2009, 116, 479-492.	1.8	160
48	Errors in the Selection of Dialysate Concentrates Cause Severe Metabolic Acidosis During Bicarbonate Hemodialysis. Artificial Organs, 2008, 21, 966-968.	1.0	7
49	The Role of Inflammatory Cytokines in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 433-442.	3.0	754
50	Association of tumor necrosis factor-α with early target organ damage in newly diagnosed patients with essential hypertension. Journal of Hypertension, 2008, 26, 2168-2175.	0.3	40
51	Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-Â and interleukin-6 in type 2 diabetic patients. Nephrology Dialysis Transplantation, 2007, 23, 919-926.	0.4	54
52	Magnesium in Chronic Renal Failure. , 2007, , 303-315.		4
53	Renal Pro-Inflammatory Cytokine Gene Expression in Diabetic Nephropathy: Effect of Angiotensin-Converting Enzyme Inhibition and Pentoxifylline Administration. American Journal of Nephrology, 2006, 26, 562-570.	1.4	192
54	The role of TNF-α in diabetic nephropathy: Pathogenic and therapeutic implications. Cytokine and Growth Factor Reviews, 2006, 17, 441-450.	3.2	173

#	Article	IF	CITATIONS
55	Urinary tumour necrosis factor-Â excretion independently correlates with clinical markers of glomerular and tubulointerstitial injury in type 2 diabetic patients. Nephrology Dialysis Transplantation, 2006, 21, 3428-3434.	0.4	114
56	Effects of Atorvastatin on Lipid Profile and Non-Traditional Cardiovascular Risk Factors in Diabetic Patients on Hemodialysis. Nephron Clinical Practice, 2003, 95, c128-c135.	2.3	21
57	Intradialytic Amino Acid Supplementation. Nephron, 2002, 90, 509-509.	0.9	0
58	Effect of Androgens on Anemia and Malnutrition in Renal Failure: Implications for Patients on Peritoneal Dialysis. Peritoneal Dialysis International, 2001, 21, 1-15.	1.1	17
59	Effect of Nandrolone Decanoate on the Lipid Profile of Male Peritoneal Dialysis Patients. Peritoneal Dialysis International, 2001, 21, 611-614.	1.1	6
60	Serum Amino Acids in Dialysis Patients: The Tryptophan/Serotonin Disorder Hypothesis and Implications for Uremic Anorexia. Peritoneal Dialysis International, 2001, 21, 625-626.	1.1	1
61	Amino acid losses during hemodialysis with polyacrylonitrile membranes: effect of intradialytic amino acid supplementation on plasma amino acid concentrations and nutritional variables in nondiabetic patients. American Journal of Clinical Nutrition, 2000, 71, 765-773.	2.2	66
62	Negative Effect of Angiotensin-Converting Enzyme Inhibitors on Erythropoietin Response in CAPD Patients. American Journal of Nephrology, 2000, 20, 248-248.	1.4	5
63	Serum Magnesium Concentration is An Independent Predictor of Parathyroid Hormone Levels in Peritoneal Dialysis Patients. Peritoneal Dialysis International, 1999, 19, 455-461.	1.1	61
64	Antiproteinuric effect of pentoxifylline in patients with diabetic nephropathy. Diabetes Care, 1999, 22, 1006-1008.	4.3	23
65	Effect of different membranes on amino-acid losses during haemodialysis. Nephrology Dialysis Transplantation, 1998, 13, 113-117.	0.4	19
66	Hypermagnesemia in Capd. Relationship with Parathyroid Hormone Levels. Peritoneal Dialysis International, 1998, 18, 77-79.	1.1	16
67	Effect of Angiotensin-Converting Enzyme Inhibitors on Hematological Parameters and Recombinant Human Erythropoietin Doses in Peritoneal Dialysis Patients. Nephron, 1998, 80, 239-239.	0.9	4
68	Relationship between serum parathyroid hormone levels and lipid profile in hemodialysis patients. Evolution of lipid parameters after parathyroidectomy. Clinical Nephrology, 1998, 49, 303-7.	0.4	5
69	Androgens for the treatment of anemia in peritoneal dialysis patients. Advances in Peritoneal Dialysis Conference on Peritoneal Dialysis, 1998, 14, 232-5.	0.1	7
70	Hemodialysis Urea Rebound and Membrane Biocompatibility: Accuracy of Kt/V Estimations. Artificial Organs, 1997, 21, 91-95.	1.0	3
71	Effects of angiotensin-converting enzyme inhibitors on anemia and erythropoietin requirements in peritoneal dialysis patients. Advances in Peritoneal Dialysis Conference on Peritoneal Dialysis, 1997, 13, 257-9.	0.1	8
72	Acute renal failure associated with foscarnet therapy. Nephrology Dialysis Transplantation, 1996, 11, 221-221.	0.4	0