Junjun Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793300/publications.pdf Version: 2024-02-01

ΙΠΝΗΠΝ ΤΑΝ

#	Article	IF	CITATIONS
1	Oil-in-water emulsions stabilized by Laponite particles modified with short-chain aliphatic amines. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 400, 44-51.	4.7	62
2	Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal. Applied Surface Science, 2008, 254, 2730-2735.	6.1	57
3	Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. Journal of Colloid and Interface Science, 2015, 443, 125-130.	9.4	56
4	Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. Journal of Colloid and Interface Science, 2015, 450, 151-158.	9.4	52
5	In situ formed Mg(OH)2 nanoparticles as pH-switchable stabilizers for emulsions. Journal of Colloid and Interface Science, 2011, 359, 155-162.	9.4	27
6	Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing. Journal of Colloid and Interface Science, 2016, 468, 300-306.	9.4	26
7	Water-dispersible hydroxyapatite nanorods synthesized by a facile method. Applied Surface Science, 2009, 255, 8774-8779.	6.1	23
8	Polyoxometalate Dicationic Ionic Liquids as Catalyst for Extractive Coupled Catalytic Oxidative Desulfurization. Catalysts, 2021, 11, 356.	3.5	21
9	Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts. Transition Metal Chemistry, 2014, 39, 213-220.	1.4	20
10	Deep oxidative desulfurization of fuels catalyzed by molybdovanadophosphoric acid on amino-functionalized SBA-15 using hydrogen peroxide as oxidant. Transition Metal Chemistry, 2013, 38, 495-501.	1.4	18
11	Modeling Fish Movement Trajectories in Relation to Hydraulic Response Relationships in an Experimental Fishway. Water (Switzerland), 2018, 10, 1511.	2.7	18
12	Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil. New Journal of Chemistry, 2019, 43, 19232-19241.	2.8	18
13	Antagonistic effect in pickering emulsion stabilized by mixtures of hydroxyapatite nanoparticles and sodium oleate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 278-287.	4.7	17
14	Temperature induced formation of particle coated non-spherical droplets. Journal of Colloid and Interface Science, 2011, 359, 171-178.	9.4	14
15	Monodisperse, colloidal and luminescent calcium fluoride nanoparticles via a citrate-assisted hydrothermal route. Journal of Colloid and Interface Science, 2018, 531, 444-450.	9.4	13
16	Removal of Hydrogen Sulfide by Hydroxyl-Ferric Oxide in a Slurry Reactor at Low Temperature. Industrial & Engineering Chemistry Research, 2020, 59, 1402-1412.	3.7	10
17	Preparation of Ionic Liquidâ€modified <scp>SBA</scp> â€15 Doped with Molybdovanadophosphoric Acid for Oxidative Desulfurization. Bulletin of the Korean Chemical Society, 2015, 36, 1784-1790.	1.9	8
18	Bio-inspired synthesis of aqueous nanoapatite liquid crystals. Scientific Reports, 2019, 9, 466.	3.3	8

Junjun Tan

#	Article	IF	CITATIONS
19	A computer-based vision method to automatically determine the 2-dimensional flow-field preference of fish. Journal of Hydraulic Research/De Recherches Hydrauliques, 2019, 57, 598-602.	1.7	4
20	Non-aqueous liquid crystals of hydroxyapatite nanorods. Acta Biomaterialia, 2020, 116, 383-390.	8.3	4
21	Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. Coatings, 2019, 9, 289.	2.6	3
22	Preparation of Sr-substituted Hydroxyapatite Nanorods for Liquid Crystal Phase Transition. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 441-448.	1.0	0
23	Aqueous Preparation of Highly Dispersed Hydroxyapatite Nanorods for Colloidal Liquid Crystals. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 230-238.	1.0	0