Christos E Chadjichristos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793294/publications.pdf

Version: 2024-02-01

45 papers 2,276 citations

218381 26 h-index 253896 43 g-index

46 all docs 46 docs citations

46 times ranked

3193 citing authors

#	Article	IF	Citations
1	Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. International Journal of Molecular Sciences, 2022, 23, 600.	1.8	4
2	Activation of Notch3 in Renal Tubular Cells Leads to Progressive Cystic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 884.	1.8	3
3	Galectin-3 in Kidney Diseases: From an Old Protein to a New Therapeutic Target. International Journal of Molecular Sciences, 2022, 23, 3124.	1.8	12
4	MO064: Expression Studies on Magi2 in Different FSGS Models. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
5	Endothelial-Specific Deletion of CD146 Protects Against Experimental Glomerulonephritis in Mice. Hypertension, 2021, 77, 1260-1272.	1.3	2
6	Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease. Cell Communication and Signaling, 2020, 18, 79.	2.7	28
7	Periostin Promotes Cell Proliferation and Macrophage Polarization to Drive Repair after AKI. Journal of the American Society of Nephrology: JASN, 2020, 31, 85-100.	3.0	64
8	Acute Kidney Injury Induces Remote Cardiac Damage and Dysfunction Through the Galectin-3 Pathway. JACC Basic To Translational Science, 2019, 4, 717-732.	1.9	41
9	MiRâ€21 is upâ€regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury. Journal of Cellular and Molecular Medicine, 2019, 23, 4839-4843.	1.6	32
10	The Role of Palladin in Podocytes. Journal of the American Society of Nephrology: JASN, 2018, 29, 1662-1678.	3.0	26
11	Connexin 43: a New Therapeutic Target Against Chronic Kidney Disease. Cellular Physiology and Biochemistry, 2018, 49, 998-1009.	1.1	34
12	Notch3 orchestrates epithelial and inflammatory responses to promote acute kidney injury. Kidney International, 2018, 94, 126-138.	2.6	22
13	NFκB-Induced Periostin Activates Integrin-κ3 Signaling to Promote Renal Injury in GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 1475-1490.	3.0	52
14	Decreased Expression of Connexin 43 Blunts the Progression of Experimental GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 2915-2930.	3.0	28
15	Reversibility of Renal Fibrosis., 2017, , 1013-1023.		0
16	Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Scientific Reports, 2016, 6, 26235.	1.6	92
17	Reduced NOV/CCN3 Expression Limits Inflammation and Interstitial Renal Fibrosis after Obstructive Nephropathy in Mice. PLoS ONE, 2015, 10, e0137876.	1.1	25
18	Discoidin domain receptor-1 and periostin: new players in chronic kidney disease. Nephrology Dialysis Transplantation, 2015, 30, 1965-1971.	0.4	19

#	Article	IF	CITATIONS
19	Functional roles of connexins and pannexins in the kidney. Cellular and Molecular Life Sciences, 2015, 72, 2869-2877.	2.4	25
20	Connexins in Renal Endothelial Function and Dysfunction. Cardiovascular & Hematological Disorders Drug Targets, 2014, 14, 15-21.	0.2	12
21	Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice. Kidney International, 2014, 86, 768-779.	2.6	53
22	The RenTg Mice: A Powerful Tool to Study Renin-Dependent Chronic Kidney Disease. PLoS ONE, 2012, 7, e52362.	1.1	15
23	Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-l-mediated upregulation of human type II collagen gene expression in articular chondrocytes. Journal of Molecular Medicine, 2012, 90, 649-666.	1.7	34
24	Progression of renal fibrosis: the underestimated role of endothelial alterations. Fibrogenesis and Tissue Repair, 2012, 5, S15.	3.4	46
25	The role of cell plasticity in progression and reversal of renal fibrosis. International Journal of Experimental Pathology, 2011, 92, 151-157.	0.6	28
26	Alteration of connexin expression is an early signal for chronic kidney disease. American Journal of Physiology - Renal Physiology, 2011, 301, F24-F32.	1.3	46
27	Improvement of renal hemodynamics during hypertension-induced chronic renal disease: role of EGF receptor antagonism. American Journal of Physiology - Renal Physiology, 2009, 297, F191-F199.	1.3	17
28	Molecular role of Cx37 in advanced atherosclerosis: A micro-array study. Atherosclerosis, 2009, 206, 69-76.	0.4	24
29	Chondroitin sulphate decreases collagen synthesis in normal and scleroderma fibroblasts through a Smadâ€independent TGFâ€Î² pathway – implication of Câ€Krox and Sp1. Journal of Cellular and Molecular Medicine, 2008, 12, 2836-2847.	1.6	7
30	Interleukin-6 (IL-6) and/or Soluble IL-6 Receptor Down-regulation of Human Type II Collagen Gene Expression in Articular Chondrocytes Requires a Decrease of $\rm Sp1 \hat{A}$ -Sp3 Ratio and of the Binding Activity of Both Factors to the COL2A1 Promoter. Journal of Biological Chemistry, 2008, 283, 4850-4865.	1.6	126
31	Targeting Connexin 43 Prevents Platelet-Derived Growth Factor-BB–Induced Phenotypic Change in Porcine Coronary Artery Smooth Muscle Cells. Circulation Research, 2008, 102, 653-660.	2.0	56
32	Interleukin-1 and Transforming Growth Factor-ß 1 as Crucial Factors in Osteoarthritic Cartilage Metabolism. Connective Tissue Research, 2008, 49, 293-297.	1.1	129
33	Human Collagen Krox Up-regulates Type I Collagen Expression in Normal and Scleroderma Fibroblasts through Interaction with Sp1 and Sp3 Transcription Factors. Journal of Biological Chemistry, 2007, 282, 32000-32014.	1.6	46
34	Connexins: New genes in atherosclerosis. Annals of Medicine, 2007, 39, 402-411.	1.5	28
35	Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nature Medicine, 2006, 12, 950-954.	15.2	259
36	Role of Endogenous Fas (CD95/Apo-1) Ligand in Balloon-Induced Apoptosis, Inflammation, and Neointima Formation. Circulation, 2006, 113, 1879-1887.	1.6	35

#	Article	IF	CITATIONS
37	Reduced Connexin43 Expression Limits Neointima Formation After Balloon Distension Injury in Hypercholesterolemic Mice. Circulation, 2006, 113, 2835-2843.	1.6	92
38	A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials, 2005, 26, 6643-6651.	5.7	128
39	Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovascular Research, 2005, 66, 583-593.	1.8	180
40	c-Krox down-regulates the expression of UDP–glucose dehydrogenase in chondrocytes. Biochemical and Biophysical Research Communications, 2005, 333, 1123-1131.	1.0	17
41	SOX9 Exerts a Bifunctional Effect on Type II Collagen Gene (COL2A1) Expression in Chondrocytes Depending on the Differentiation State. DNA and Cell Biology, 2003, 22, 119-129.	0.9	74
42	Sp1 and Sp3 Transcription Factors Mediate Interleukin- $1\hat{l}^2$ Down-regulation of Human Type II Collagen Gene Expression in Articular Chondrocytes. Journal of Biological Chemistry, 2003, 278, 39762-39772.	1.6	110
43	Down-regulation of Human Type II Collagen Gene Expression by Transforming Growth Factor- \hat{l}^21 (TGF- \hat{l}^21) in Articular Chondrocytes Involves SP3/SP1 Ratio. Journal of Biological Chemistry, 2002, 277, 43903-43917.	1.6	64
44	SP3 Represses the SP1-mediated Transactivation of the HumanCOL2A1 Gene in Primary and De-differentiated Chondrocytes. Journal of Biological Chemistry, 2001, 276, 36881-36895.	1.6	81
45	Regulation of Human COL2A1 Gene Expression in Chondrocytes. Journal of Biological Chemistry, 2000, 275, 27421-27438.	1.6	60