Vadim Brazhkin

List of Publications by Citations

Source: https://exaly.com/author-pdf/7932868/vadim-brazhkin-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

303 5,882 37 63 g-index

310 6,435 2.8 6.11 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
303	Harder than diamond: Dreams and reality. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 2002 , 82, 231-253		337
302	Logarithmic Kinetics of the Amorphous-Amorphous Transformations in SiO2 and GeO2 Glasses under High Pressure. <i>Physical Review Letters</i> , 1998 , 80, 999-1002	7.4	202
301	Toroid type high-pressure device: history and prospects. <i>High Pressure Research</i> , 2004 , 24, 371-383	1.6	201
300	Two liquid states of matter: a dynamic line on a phase diagram. <i>Physical Review E</i> , 2012 , 85, 031203	2.4	175
299	Collective modes and thermodynamics of the liquid state. <i>Reports on Progress in Physics</i> , 2016 , 79, 016.	5024.4	148
298	High-pressure transformations in simple melts. <i>High Pressure Research</i> , 1997 , 15, 267-305	1.6	135
297	The phonon theory of liquid thermodynamics. Scientific Reports, 2012, 2, 421	4.9	132
296	"Liquid-gas" transition in the supercritical region: fundamental changes in the particle dynamics. <i>Physical Review Letters</i> , 2013 , 111, 145901	7.4	127
295	High-pressure phase transformations in liquids and amorphous solids. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 6059-6084	1.8	123
294	Widom line for the liquid-gas transition in Lennard-Jones system. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14112-5	3.4	103
293	Thermodynamic behaviour of supercritical matter. <i>Nature Communications</i> , 2013 , 4, 2331	17.4	88
292	Where is the supercritical fluid on the phase diagram?. <i>Physics-Uspekhi</i> , 2012 , 55, 1061-1079	2.8	83
291	Mechanical properties of the 3D polymerized, sp2🛭p3 amorphous, and diamond-plus-graphite nanocomposite carbon phases prepared from C60 under high pressure. <i>Journal of Applied Physics</i> , 1998 , 84, 219-226	2.5	79
290	High-pressure synthesized materials: treasures and hints. <i>High Pressure Research</i> , 2007 , 27, 333-351	1.6	78
289	Network rigidity and properties of SiO2 and GeO2 glasses under pressure. <i>Physical Review Letters</i> , 2004 , 93, 135502	7.4	78
288	Emergence and Evolution of the k Gap in Spectra of Liquid and Supercritical States. <i>Physical Review Letters</i> , 2017 , 118, 215502	7.4	66
287	Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines. <i>Physical Review E</i> , 2015 , 91, 022111	2.4	66

(2000-2008)

286	Nature of the structural transformations in B2O3 glass under high pressure. <i>Physical Review Letters</i> , 2008 , 101, 035702	7.4	65	
285	Metastable crystalline and amorphous carbon phases obtained from fullerite C60 by high-pressureligh-temperature treatment. <i>Physical Review B</i> , 1997 , 56, 11465-11471	3.3	63	
284	In situ study of the mechanism of formation of pressure-densified Sio2 glasses. <i>JETP Letters</i> , 2002 , 75, 342-347	1.2	59	
283	Nonequilibrium phase transitions and amorphization in Si, Si/GaAs, Ge, and Ge/GaSb at the decompression of high-pressure phases. <i>Physical Review B</i> , 1995 , 51, 7549-7554	3.3	58	
282	What separates a liquid from a gas?. <i>Physics Today</i> , 2012 , 65, 68-69	0.9	52	
281	Glassy dynamics under superhigh pressure. <i>Physical Review E</i> , 2010 , 81, 041503	2.4	51	
2 80	Van der Waals supercritical fluid: exact formulas for special lines. <i>Journal of Chemical Physics</i> , 2011 , 135, 084503	3.9	50	
279	Metallization of liquid iodine under high pressure. High Pressure Research, 1991, 6, 363-369	1.6	48	
278	Structural transformations and anomalous viscosity in the B2O3 melt under high pressure. <i>Physical Review Letters</i> , 2010 , 105, 115701	7.4	45	
277	Lattice parameters and thermal expansion of superconducting boron-doped diamonds. <i>Physical Review B</i> , 2006 , 74,	3.3	45	
276	Frenkel line and solubility maximum in supercritical fluids. <i>Physical Review E</i> , 2015 , 91, 012112	2.4	44	
275	Gapped momentum states. <i>Physics Reports</i> , 2020 , 865, 1-44	27.7	42	
274	Understanding the problem of glass transition on the basis of elastic waves in a liquid. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 425104	1.8	41	
273	AsS melt under pressure: one substance, three liquids. <i>Physical Review Letters</i> , 2008 , 100, 145701	7.4	40	
272	True Widom line for a square-well system. <i>Physical Review E</i> , 2014 , 89, 042136	2.4	39	
271	Hardening of fullerite C60 during temperature-induced polymerization and amorphization under pressure. <i>Applied Physics Letters</i> , 2000 , 76, 712-714	3.4	39	
270	Experimental evidence of the Frenkel line in supercritical neon. <i>Physical Review B</i> , 2017 , 95,	3.3	38	
269	Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core. <i>Physics-Uspekhi</i> , 2000 , 43, 493-508	2.8	37	

268	Non-Traditional Carbon Semiconductors Prepared from Fullerite C60 and Carbyne under High Pressure. <i>Physica Status Solidi (B): Basic Research</i> , 1999 , 211, 401-412	1.3	37
267	Pressure-temperature phase diagram of solid and liquid Te under pressures up to 10 GPa. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 1419-1425	1.8	37
266	Lattice instability approach to the problem of high-pressure solid-state amorphization. <i>High Pressure Research</i> , 1996 , 15, 9-30	1.6	36
265	Evidence for structural crossover in the supercritical state. <i>Journal of Chemical Physics</i> , 2013 , 139, 234	503.9	34
264	Pressure-induced lattice instability and solid-state amorphization. <i>Physical Review B</i> , 1996 , 54, 12036-1	20,4,8	34
263	Collective excitations and thermodynamics of disordered state: new insights into an old problem. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 11417-27	3.4	32
262	Dynamical crossover line in supercritical water. <i>Scientific Reports</i> , 2015 , 5, 14234	4.9	32
261	Mechanism of formation of the superhard disordered graphite-like phase from fullerite C60 under pressure. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 249-256	1.8	32
260	The influence of high pressure on the disordering of the crystal structure of solids rapidly quenched from the melt. <i>Physica Scripta</i> , 1989 , 39, 338-340	2.6	32
259	Hard and superhard carbon phases synthesized from fullerites under pressure. <i>Journal of Superhard Materials</i> , 2012 , 34, 400-423	0.9	31
258	Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible. <i>Journal of Applied Physics</i> , 2019 , 125, 130901	2.5	30
257	Excitation spectra in fluids: How to analyze them properly. Scientific Reports, 2019, 9, 10483	4.9	30
256	Metastable phases and Thetastable Tphase diagrams. Journal of Physics Condensed Matter, 2006, 18, 964	13 19 85(0 30
255	Nature of semiconductor-to-metal transition and volume properties of bulk tetrahedral amorphous GaSb and GaSb-Ge semiconductors under high pressure. <i>Physical Review Letters</i> , 1994 , 73, 3262-3265	7.4	30
254	The heat capacity of matter beyond the Dulong-Petit value. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 235401	1.8	29
253	Energy dispersive x-ray diffraction and reverse Monte Carlo structural study of liquid gallium under pressure. <i>Physical Review B</i> , 2012 , 86,	3.3	29
252	Fabrication of Eboron by chemical-reaction and melt-quenching methods at high pressures. Journal of Materials Research, 2004 , 19, 1643-1648	2.5	29
251	Mechanism of three-dimensional polymerization of fullerite C60 at high pressures. <i>JETP Letters</i> , 1996 , 64, 802-807	1.2	29

(2007-1994)

250	Temperature-induced amorphization of SiO2 stishovite. <i>Physical Review B</i> , 1994 , 50, 12984-12986	3.3	29
249	Transformations of C60 fullerite under high-pressure high-temperature conditions. <i>Uspekhi Fizicheskikh Nauk</i> , 1996 , 166, 893	0.5	29
248	Duality of liquids. <i>Scientific Reports</i> , 2013 , 3, 2188	4.9	28
247	Elastic properties of crystalline and liquid gallium at high pressures. <i>Journal of Experimental and Theoretical Physics</i> , 2008 , 107, 818-827	1	28
246	Elastic properties of superhard amorphous carbon pressure-synthesized from C60 by surface Brillouin scattering. <i>Physical Review B</i> , 2001 , 64,	3.3	28
245	Pressure-driven "molecular metal" to "atomic metal" transition in crystalline Ga. <i>Physical Review Letters</i> , 2007 , 98, 165503	7.4	27
244	Interplay between the structure and properties of new metastable carbon phases obtained under high pressures from fullerite C60 and carbyne. <i>JETP Letters</i> , 2002 , 76, 681-692	1.2	27
243	Pressure-temperature diagram of liquid bismuth. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 1427-14	31 .8	27
242	Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure. <i>JETP Letters</i> , 2003 , 78, 393-397	1.2	26
241	Atomistic modeling of multiple amorphous-amorphous transitions in SiO2 and GeO2 glasses at megabar pressures. <i>Physical Review B</i> , 2011 , 83,	3.3	25
241 240		3.3 2.8	25
	megabar pressures. <i>Physical Review B</i> , 2011 , 83,		
240	megabar pressures. <i>Physical Review B</i> , 2011 , 83, . <i>Physics-Uspekhi</i> , 2006 , 49, 719 Metastable high-pressure phases of low-Z compounds: creation of a new chemistry or a prompt for	2.8	25
240	megabar pressures. <i>Physical Review B</i> , 2011 , 83, . <i>Physics-Uspekhi</i> , 2006 , 49, 719 Metastable high-pressure phases of low-Z compounds: creation of a new chemistry or a prompt for old principles?. <i>Nature Materials</i> , 2004 , 3, 497-500	2.8	25 25
240 239 238	megabar pressures. <i>Physical Review B</i> , 2011 , 83, . <i>Physics-Uspekhi</i> , 2006 , 49, 719 Metastable high-pressure phases of low-Z compounds: creation of a new chemistry or a prompt for old principles?. <i>Nature Materials</i> , 2004 , 3, 497-500 Crossover between liquidlike and gaslike behavior in CH_{4} at 400 K. <i>Physical Review E</i> , 2017 , 96, 05217	2.8 27 1 3 .4	25 25 24
240 239 238 237	megabar pressures. <i>Physical Review B</i> , 2011 , 83, . <i>Physics-Uspekhi</i> , 2006 , 49, 719 Metastable high-pressure phases of low-Z compounds: creation of a new chemistry or a prompt for old principles?. <i>Nature Materials</i> , 2004 , 3, 497-500 Crossover between liquidlike and gaslike behavior in CH_{4} at 400 K. <i>Physical Review E</i> , 2017 , 96, 05217 Dynamic transition in supercritical iron. <i>Scientific Reports</i> , 2014 , 4, 7194 Dielectric spectroscopy and ultrasonic study of propylene carbonate under ultra-high pressures.	2.8 27 13.4 4.9	25 25 24 24
240 239 238 237 236	megabar pressures. <i>Physical Review B</i> , 2011 , 83, . <i>Physics-Uspekhi</i> , 2006 , 49, 719 Metastable high-pressure phases of low-Z compounds: creation of a new chemistry or a prompt for old principles?. <i>Nature Materials</i> , 2004 , 3, 497-500 Crossover between liquidlike and gaslike behavior in CH_{4} at 400 K. <i>Physical Review E</i> , 2017 , 96, 05217 Dynamic transition in supercritical iron. <i>Scientific Reports</i> , 2014 , 4, 7194 Dielectric spectroscopy and ultrasonic study of propylene carbonate under ultra-high pressures. <i>Journal of Chemical Physics</i> , 2012 , 137, 084502	2.8 27 13.4 4.9 3.9	25 25 24 24 24

Elastic moduli and the mechanical properties of stishovite single crystals. Physics-Uspekhi, 2002, 45, 447-4.88 232 23 Multiple Amorphous Amorphous Transitions. Advances in Chemical Physics, 2009, 29-82 231 22 Optical absorption and luminescence of germanium oxygen-deficient centers in densified 230 3 22 germanosilicate glass. Optics Letters, 1997, 22, 1089-91 Transformations of C60fullerite under high-pressure high-temperature conditions. Physics-Uspekhi, 2.8 229 **1996**, 39, 837-840 Interparticle interaction in condensed media: some elements are 'more equal than others'. 228 2.8 21 Physics-Uspekhi, 2009, 52, 369-376 Ultrasonic study of the phase diagram of methanol. JETP Letters, 2004, 80, 597-601 227 1.2 21 Direct links between dynamical, thermodynamic, and structural properties of liquids: Modeling 226 20 2.4 results. *Physical Review E*, **2017**, 95, 032116 Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free 225 11.5 20 Ge Nanoparticles. *Nano Letters*, **2015**, 15, 7334-40 Thermodynamically Consistent pl Phase Diagram of Boron Oxide B2O3 by in Situ Probing and 3.8 224 20 Thermodynamic Analysis. Journal of Physical Chemistry C, 2015, 119, 20600-20605 Comparative studies of mechanical properties of stishovite and sapphire single crystals by 0.9 223 20 nanoindentation. Journal of Superhard Materials, 2010, 32, 406-414 First-principles calculations of structural changes in B2O3 glass under pressure. Physical Review B, 222 20 3.3 2008, 78, Nonviscous metallic liquid Se. Physical Review Letters, 2007, 99, 245901 221 20 7.4 Nonequilibrium Phase Transformations in Diamond and Zincblende Semiconductors under High 220 1.3 20 Pressure. Physica Status Solidi (B): Basic Research, 1996, 198, 481-490 Elastic Softening of Amorphous H2O Network prior to the hda-lda Transition in Amorphous State.. 219 20 Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 1129-1131 Harder than diamond: Dreams and reality 218 20 Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the 1.8 19 217 Frenkel line. Journal of Physics Condensed Matter, 2018, 30, 134003 Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the 2.8 216 19 viscosity of liquid iron. Physics-Uspekhi, 2009, 52, 79-92 Structure of bulk amorphous GaSb: A temperature-dependent EXAFS study. Physical Review B, 1997 215 3.3 19 , 56, 11531-11535

214	Martensitic transition in single-crystalline EGeO2 at compression. <i>JETP Letters</i> , 2000 , 71, 293-297	1.2	19	
213	Crossover of collective modes and positive sound dispersion in supercritical state. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 43LT01	1.8	19	
212	Minimal quantum viscosity from fundamental physical constants. <i>Science Advances</i> , 2020 , 6, eaba3747	14.3	18	
211	Viscosity behavior spanning four orders of magnitude in As-S melts under high pressure. <i>Physical Review Letters</i> , 2009 , 102, 115901	7.4	18	
210	Investigation of the crystallization of liquid iron under pressure: Extrapolation of the melt viscosity into the megabar range. <i>JETP Letters</i> , 1998 , 68, 502-508	1.2	18	
209	Elastic properties of D2O ices in solid-state amorphization and transformations between amorphous phases. <i>JETP Letters</i> , 2003 , 78, 488-492	1.2	18	
208	Pressure-induced crossover between diffusive and displacive mechanisms of phase transitions in single-crystalline alpha-GeO2. <i>Physical Review Letters</i> , 2003 , 90, 145503	7.4	18	
207	Mechanism and kinetics of the reversible transformation lda-hda of amorphous ice under pressure. JETP Letters, 1999 , 69, 694-700	1.2	18	
206	Comparative nanoindentation of single crystals of hard and superhard oxidess. <i>Journal of Superhard Materials</i> , 2014 , 36, 217-230	0.9	17	
205	Transport coefficients of soft sphere fluid at high densities. <i>JETP Letters</i> , 2012 , 95, 320-325	1.2	17	
204	Properties of liquid iron along the melting line up to Earth-core pressures. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 285104	1.8	17	
203	Pressure-induced structural transformation in radiation-amorphized zircon. <i>Physical Review Letters</i> , 2007 , 98, 135502	7.4	17	
202	Bulk nanostructured carbon phases prepared from C60: approaching the Edeal Chardness. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 236209	1.8	17	
201	Elastic constants of stishovite up to its amorphization temperature. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 1869-1875	1.8	17	
200	Collective modes and gapped momentum states in liquid Ga: Experiment, theory, and simulation. <i>Physical Review B</i> , 2020 , 101,	3.3	16	
199	Dynamic transition of supercritical hydrogen: defining the boundary between interior and atmosphere in gas giants. <i>Physical Review E</i> , 2014 , 89, 032126	2.4	16	
198	Densified low-hygroscopic form of P2O5 glass. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10442		16	
197	Molecular-network-ionic structure transitions in liquid AlCl(3) and ZnCl(2) halogenides under pressure. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 246104	1.8	16	

196	Two scenarios for phase-transformation in disordered media. <i>JETP Letters</i> , 2003 , 78, 542-547	1.2	16
195	The high-pressure phase diagram of synthetic epsomite (MgSO4ITH2O and MgSO4ITD2O) from ultrasonic and neutron powder diffraction measurements. <i>Physics and Chemistry of Minerals</i> , 2013 , 40, 271-285	1.6	15
194	Pressure-induced change in the relaxation dynamics of glycerol. <i>JETP Letters</i> , 2010 , 92, 479-483	1.2	15
193	Comment on Cauchy Relation in Dense H2O Ice VIII Physical Review Letters, 1997, 78, 2493-2493	7.4	15
192	Mechanism of the formation of a diamond nanocomposite during transformations of C60 fullerite at high pressure. <i>JETP Letters</i> , 1999 , 69, 869-875	1.2	15
191	Enhancement of electron-phonon interactions in the nonequilibrium solid solutions Al1-xSix. <i>Physical Review B</i> , 1995 , 51, 1112-1116	3.3	15
190	Universal Effect of Excitation Dispersion on the Heat Capacity and Gapped States in Fluids. <i>Physical Review Letters</i> , 2020 , 125, 125501	7.4	15
189	Anticrossing of Longitudinal and Transverse Modes in Simple Fluids. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4470-4475	6.4	14
188	Isoviscosity lines and the liquid-glass transition in simple liquids. <i>Physical Review E</i> , 2012 , 86, 011503	2.4	14
187	Structural transformation yielding an unusual metallic state in liquid As2S3 under high pressure. <i>Physical Review B</i> , 2010 , 82,	3.3	14
186	Comment on "Sixfold-coordinated amorphous polymorph of SiO2 under high pressure". <i>Physical Review Letters</i> , 2009 , 102, 209603; discussion 209604	7:4	14
185	Elastic softness of amorphous tetrahedrally bonded GaSb and (Ge2)0.27(GaSb)0.73 semiconductors. <i>Physical Review B</i> , 1997 , 56, 990-993	3.3	14
184	Crossover between the thermodynamic and nonequilibrium scenarios of structural transformations of H2O Ih ice during compression. <i>Journal of Experimental and Theoretical Physics</i> , 2002 , 94, 283-292	1	14
183	Mechanical Properties of the Superhard Polymeric and Disordered Phases Prepared from C60, C70, and C2N under High Pressure <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 1998 , 7, 989-991	О	14
182	Comment on "Behavior of Supercritical Fluids across the 'Frenkel Line'". <i>Journal of Physical Chemistry B</i> , 2018 , 122, 6124-6128	3.4	13
181	Vivid Manifestation of Nonergodicity in Glassy Propylene Carbonate at High Pressures. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 7593-7	3.4	13
180	Helium at elevated pressures: Quantum liquid with non-static shear rigidity. <i>Journal of Applied Physics</i> , 2013 , 113, 103514	2.5	13
179	Investigation of polyamorphism in compressed B2O3 glass by the direct measurement of the density. <i>JETP Letters</i> , 2009 , 89, 244-248	1.2	13

(2011-1998)

178	Thermopower of All Six solid solutions in vicinity of lattice instability. <i>Journal of Experimental and Theoretical Physics</i> , 1998 , 86, 190-196	1	13	
177	Structural and elastic anisotropy of carbon phases prepared from fullerite C60. <i>Applied Physics Letters</i> , 2003 , 83, 3903-3905	3.4	13	
176	Precise in situ study of the kinetics of pressure-induced phase transition in CaF2 including initial transformation stages. <i>Journal of Experimental and Theoretical Physics</i> , 2005 , 100, 971-976	1	13	
175	Boron oxides under pressure: Prediction of the hardest oxides. <i>Physical Review B</i> , 2018 , 98,	3.3	13	
174	Yang etlal. Reply. <i>Physical Review Letters</i> , 2018 , 120, 219602	7.4	13	
173	Phase transformations in liquids and the liquidgas transition in fluids at supercritical pressures. <i>Physics-Uspekhi</i> , 2017 , 60, 954-957	2.8	12	
172	Pressure-induced structural transformations and the anomalous behavior of the viscosity in network chalcogenide and oxide melts. <i>JETP Letters</i> , 2011 , 94, 161-170	1.2	12	
171	Anharmonicity of short-wavelength acoustic phonons in silicon at high temperatures. <i>JETP Letters</i> , 2000 , 72, 195-198	1.2	12	
170	Pressure-induced distortion of the amorphous tetrahedral network in a-GaSb: Direct evidence from EXAFS. <i>Physical Review B</i> , 1996 , 54, R14242-R14245	3.3	12	
169	Anomalies of the baric and temperature dependences of the elastic characteristics of ice during solid-phase amorphization and the phase transition in the amorphous state. <i>Journal of Experimental and Theoretical Physics</i> , 1997 , 85, 109-113	1	11	
168	Electron transport in carbynes modified under high pressure. JETP Letters, 2003, 78, 511-519	1.2	11	
167	Comment on "New metallic crystalline carbon: three dimensionally polymerized C60 fullerite". <i>Physical Review Letters</i> , 2000 , 85, 5671-2	7.4	11	
166	As2Te3 glass under high hydrostatic pressure: Polyamorphism, relaxation, and metallization. <i>Physical Review B</i> , 2017 , 95,	3.3	10	
165	Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities. <i>Journal of Chemical Physics</i> , 2018 , 148, 134508	3.9	10	
164	Direct Volumetric Study of High-Pressure Driven Polyamorphism and Relaxation in the Glassy Germanium Chalcogenides. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 358-63	3.4	10	
163	AsS layered-structure compound: new kind of covalent crystals. <i>CrystEngComm</i> , 2011 , 13, 2599	3.3	10	
162	Compressibility and polymorphism of \(\text{PAs}(4)S(4) \) realgar under high pressure. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 385401	1.8	10	
161	Nonlocal dielectric relaxation in glycerol. <i>Physical Review B</i> , 2011 , 84,	3.3	10	

160	Structural studies of phase transitions in crystalline and liquid halides (ZnCl2, AlCl3) under pressure. JETP Letters, 2005 , 82, 713-718	1.2	10
159	Phase transformations and the nature of the semiconductor-to-metal transition in bulk a-GaSb and a-(Ge2)1-x(GaSb)x semiconductors under high pressure. <i>Physical Review B</i> , 1996 , 54, 1808-1818	3.3	10
158	Kinetics of Amorphous-to-Amorphous Transformations in SiO2 and GeO2 Glasses under High Pressure <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 1998 , 7, 347-352	О	10
157	Experimental and modeling evidence for structural crossover in supercritical CO_{2}. <i>Physical Review E</i> , 2020 , 101, 052109	2.4	9
156	WB : Synthesis, Properties, and Crystal Structure-New Insights into the Long-Debated Compound. <i>Advanced Science</i> , 2020 , 7, 2000775	13.6	9
155	Direct Experimental Evidence of Longitudinal and Transverse Mode Hybridization and Anticrossing in Simple Model Fluids. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1370-1376	6.4	9
154	Elastic properties of the hydrogen-bonded liquid and glassy glycerol under high pressure: comparison with propylene carbonate. <i>RSC Advances</i> , 2017 , 7, 33278-33284	3.7	9
153	The Frenkel line and supercritical technologies. Russian Journal of Physical Chemistry B, 2014 , 8, 1087-10	0942	9
152	High-pressure phases in the GaSb-Mn system. <i>Physics of the Solid State</i> , 2006 , 48, 2177-2182	0.8	9
151	Structural Studies of Bulk Amorphous GaSb under High Pressures. <i>Physica Status Solidi (B): Basic Research</i> , 1996 , 198, 503-508	1.3	9
150	The kinetics of solidification of Al-Si eutectic alloys under high pressure. <i>High Pressure Research</i> , 1991 , 6, 333-339	1.6	9
149	The influence of high pressure on the solidification of supercooled Se melt. <i>High Pressure Research</i> , 1991 , 6, 341-347	1.6	9
148	Pressure-Driven Chemical Disorder in Glassy AsS up to 14.7 GPa, Postdensification Effects, and Applications in Materials Design. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 430-442	3.4	9
147	Crystallization and glass transition in crude oils and their fractions at atmospheric and high pressures. <i>Journal of Molecular Liquids</i> , 2017 , 241, 428-434	6	8
146	Diamond monohydride: the most stable three-dimensional hydrocarbon. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17739-44	3.6	8
145	P-T phase diagram and structural transformations of molten P2O5 under pressure. <i>Physical Review B</i> , 2014 , 89,	3.3	8
144	High-pressure thermoelectric characteristics of Bi2Te3 semiconductor with different charge carrier densities. <i>JETP Letters</i> , 2014 , 99, 283-285	1.2	8
143	High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. <i>JETP Letters</i> , 2014 , 98, 539-543	1.2	8

142	Electrotransport and magnetic properties of Cr-GaSb phases synthesized under high pressure. Journal of Physics Condensed Matter, 2011 , 23, 446001	1.8	8
141	Phase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2oxide. <i>Physics-Uspekhi</i> , 2003 , 46, 1283-1289	2.8	8
140	Elastic properties of carbon phases obtained from C60under pressure: the first example of anisotropic disordered carbon solid. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10911-10915	1.8	8
139	Three-Dimensional Polymerization of Fullerite C60 under High Pressure <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 1998 , 7, 811-813	Ο	8
138	Structural Transformations in Fullerite C60 under High-Pressure(P=12.5GPa) and High-Temperature Conditions <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 1998 , 7, 817-819	Ο	8
137	Extended short-range order determines the overall structure of liquid gallium. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 4122-4129	3.6	8
136	Pronounced structural crossover in water at supercritical pressures. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 385102	1.8	7
135	Structural and Dielectric Relaxations in Vitreous and Liquid State of Monohydroxy Alcohol at High Pressure. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 8203-8210	3.4	7
134	General behavior of chalcogenides of rare-earth metals in transition to the intermediate valence state under high pressures. <i>Physical Review B</i> , 2014 , 90,	3.3	7
133	DIRECTIONAL ANISOTROPY IN CARBON PHASES PREPARED FROM FULLERITE C60 UNDER HIGH PRESSURES. <i>High Pressure Research</i> , 2003 , 23, 275-279	1.6	7
132	Correlations between the physical properties of the carbon phases obtained at a high pressure from C60 fullerite. <i>Physics of the Solid State</i> , 2002 , 44, 405-409	0.8	7
131	Anisotropy of the elastic properties and the microhardness of disordered superhard carbon obtained from C60 fullerite under high pressures. <i>JETP Letters</i> , 2001 , 73, 552-556	1.2	7
130	The inversion of relative shear rigidity in different material classes at megabar pressures. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10861-10867	1.8	7
129	Quasi-transitions in simple liquids under high pressures. <i>Physics-Uspekhi</i> , 1999 , 42, 941-945	2.8	7
128	Pressure-temperature diagram of liquid antimony. High Pressure Research, 1995, 13, 233-241	1.6	7
127	An enhanced superconductivity in the supersaturated Al-Si solid solutions. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 5933-5940	1.8	7
126	The decomposition of supersaturated Al1-xSixsolid solutions. <i>Journal of Physics Condensed Matter</i> , 1994 , 6, 9079-9088	1.8	7
125	Metallization of the melts of Se, S, I2 under high pressure. <i>High Pressure Research</i> , 1992 , 10, 454-456	1.6	7

124	Nonmetal - metal transition in liquid Se under high pressure. High Pressure Research, 1990, 4, 348-350	1.6	7
123	Speed of sound from fundamental physical constants. <i>Science Advances</i> , 2020 , 6,	14.3	7
122	Behavior of detonation nanodiamond at high pressures and temperatures in the presence of a hydrogen-containing fluid. <i>Inorganic Materials</i> , 2016 , 52, 351-356	0.9	7
121	The nature of collective excitations and their crossover at extreme supercritical conditions. <i>Scientific Reports</i> , 2019 , 9, 755	4.9	6
120	Elastic properties of liquid and glassy propane-based alcohols under high pressure: the increasing role of hydrogen bonds in a homologous family. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 2665-267	.3.6	6
119	Study of the compressibility of FeSi, MnSi, and CoS2 transition-metal compounds at high pressures. <i>JETP Letters</i> , 2016 , 104, 99-104	1.2	6
118	Quantum effects in diamond isotopes at high pressures. <i>Physical Review B</i> , 2016 , 93,	3.3	6
117	Can glassforming liquids be 'simple'?. <i>Physics-Uspekhi</i> , 2019 , 62, 623-629	2.8	6
116	High-pressure, high-temperature study of GeS2 and GeSe2. <i>Inorganic Materials</i> , 2014 , 50, 768-774	0.9	6
115	Crystallization and vitrification of ethanol at high pressures. <i>Journal of Chemical Physics</i> , 2014 , 141, 194.	5 9.4	6
114	Logarithmic relaxation in radiation-amorphized zircon. <i>Physical Review B</i> , 2007 , 76,	3.3	6
113	Ferromagnetism in the high-pressure phases of (GaSb)1☑ Mnx. <i>JETP Letters</i> , 2006 , 84, 195-198	1.2	6
112	Hopping conductivity of carbynes modified under high pressures and temperatures: Galvanomagnetic and thermoelectric properties. <i>Journal of Experimental and Theoretical Physics</i> , 2002 , 95, 123-131	1	6
111	Decay kinetics of nonequilibrium Al-Si solid solutions. <i>Physical Review B</i> , 2000 , 61, 6019-6027	3.3	6
110	New crystalline and amorphous carbon modifications produced from fullerite at high pressure. <i>Uspekhi Fizicheskikh Nauk</i> , 1997 , 167, 1019	0.5	6
109	Energy-dispersive X-ray diffraction study of liquid gallium under high pressure at elevated temperatures. <i>High Pressure Research</i> , 2013 , 33, 191-195	1.6	5
108	Supercritical GrBeisen parameter and its universality at the Frenkel line. <i>Physical Review E</i> , 2017 , 96, 012107	2.4	5
107	Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O D 2O solutions. <i>Physical Review B</i> , 2015 , 92,	3.3	5

106	Thermoelectric power anomalies and electron-phonon interaction in nonequilibrium solid solutions Al1\(\mathbb{B}\)Six. <i>Physical Review B</i> , 1997 , 56, 10816-10819	3.3	5
105	Can high pressure experiments shed light on the puzzles of glass transition? The problem of extrapolation. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 244102	1.8	5
104	Anisotropic Carbon Phases Prepared from Fullerite C70 under High Pressure. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2006 , 14, 409-414	1.8	5
103	1D-3D crossover in hopping conduction of carbynes. <i>JETP Letters</i> , 2000 , 72, 381-384	1.2	5
102	Transformations in amorphous solids under high pressures. <i>Uspekhi Fizicheskikh Nauk</i> , 1999 , 169, 1157	0.5	5
101	Crystal structure of new AsS2 compound. Crystallography Reports, 2013, 58, 61-64	0.6	4
100	High-precision measurements of the compressibility and the electrical resistivity of bulk g-As2Te3 glasses at a hydrostatic pressure up to 8.5 GPa. <i>Journal of Experimental and Theoretical Physics</i> , 2017 , 125, 451-464	1	4
99	Glassy selenium at high pressure: Le Chatelier's principle still works. <i>Physical Review B</i> , 2017 , 96,	3.3	4
98	Ilost in Translation II what do the negative values of effective Grileisen coefficients mean in shock-wave experiments? [Extended comment on Bhock compression of porous metals and silicates Iby A.B. Medvedev and R.F. Trunin, Phys. Usp. 55773 (2012)]. <i>Physics-Uspekhi</i> , 2012 , 55, 790-795	2.8	4
97	New crystalline and amorphous carbon modifications produced from fullerite at high pressure. <i>Physics-Uspekhi</i> , 1997 , 40, 969-971	2.8	4
96	Structural transformations of the cumulene form of amorphous carbyne at high pressure. <i>JETP Letters</i> , 1997 , 66, 255-260	1.2	4
95	High-temperature Transitions of C60 at Moderate Pressures. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2008 , 16, 475-485	1.8	4
94	Hopping conduction and magnetoresistance of C2N -based nanomaterials synthesized under high pressure. <i>Physics of the Solid State</i> , 2007 , 49, 1403-1409	0.8	4
93	Thermodynamic and dilatometric properties of the dimerized phase of a C60 fullerene. <i>Physics of the Solid State</i> , 2003 , 45, 802-808	0.8	4
92	Elastic properties of substances in the megabar pressure range: Inversion of shear rigidity. <i>JETP Letters</i> , 2001 , 73, 197-201	1.2	4
91	The kinetics of decay of supersaturated solid solutions Al(Si) produced under high pressure. <i>Physica Status Solidi A</i> , 1993 , 140, 127-133		4
90	Ultrahard nanomaterials: myths and reality. <i>Physics-Uspekhi</i> , 2020 , 63, 523-544	2.8	4
89	High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa. <i>Journal of Experimental and Theoretical Physics</i> , 2016 , 123, 308-317	1	4

88	Comparative study of the elastic properties of adamantane and 1-chloroadamantane at high pressure and different temperatures and at order-disorder transitions. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 2349-2354	3.6	4
87	Thermodynamics of a Magnetic Transition in MnS2 at High Pressures. <i>JETP Letters</i> , 2018 , 107, 311-314	1.2	4
86	Universal interrelation between dynamics and thermodynamics and a dynamically driven "c" transition in fluids. <i>Physical Review E</i> , 2021 , 104, 034108	2.4	4
85	Phase transformations of fullerene C70 with metals at high temperatures and pressure. <i>Materials Letters</i> , 2020 , 277, 128307	3.3	3
84	Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures. <i>Journal of Experimental and Theoretical Physics</i> , 2016 , 123, 443-451	1	3
83	The structure and synthesis of organic crystalline polymers: hints from ab initio computation. <i>CrystEngComm</i> , 2018 , 20, 4003-4011	3.3	3
82	Order versus disorder: In situ high-pressure structural study of highly polymerized three-dimensional C60 fullerite. <i>Journal of Applied Physics</i> , 2019 , 126, 065102	2.5	3
81	Magnetic, kinetic, and optical properties of new high-pressure phases in the system CrtaSb: Ab initio density functional theory study. <i>International Journal of Quantum Chemistry</i> , 2013 , 113, 820-829	2.1	3
80	Thermopower of calcium at high pressures. <i>JETP Letters</i> , 2013 , 97, 490-494	1.2	3
79	Electron transport properties of lithium and phase transitions at high pressures. <i>JETP Letters</i> , 2013 , 97, 270-273	1.2	3
78	Ultrasonic study of solid-phase amorphization and polyamorphism in an H2O-D2O (1: 1) solid solution. <i>JETP Letters</i> , 2013 , 96, 789-793	1.2	3
77	Effective introduction of tungsten carbide nanoparticles into a hard alloy. <i>Nanotechnologies in Russia</i> , 2013 , 8, 659-663	0.6	3
76	Excitation spectra of liquid iron up to superhigh temperatures. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 345401	1.8	3
75	Structural transformations in the AsBe system under high pressures and temperatures. <i>Journal of Alloys and Compounds</i> , 2015 , 644, 799-803	5.7	3
74	High pressure behavior of P2O5crystalline modifications: compressibility, elastic properties and phase transitions. <i>Materials Research Express</i> , 2015 , 2, 025201	1.7	3
73	Solid-state diffusion in amorphous zirconolite. <i>Journal of Applied Physics</i> , 2014 , 116, 184901	2.5	3
72	Lattice dynamics of coesite. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 275401	1.8	3
71	Ultrasonic study of epsomite (MgSO4[7H2O) under pressure. <i>High Pressure Research</i> , 2010 , 30, 51-54	1.6	3

(2000-2008)

70	Elasticity of Molecular Fullerite C60 under Pressure. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2008 , 16, 499-506	1.8	3
69	The influence of dimerization on the orientational phase transition in the C60 fullerite. <i>Physics of the Solid State</i> , 2002 , 44, 447-449	0.8	3
68	A new nanocluster carbyne-based material synthesized under high pressure. <i>Physics of the Solid State</i> , 2002 , 44, 607-611	0.8	3
67	Rigidity and logarithmic relaxation in network glasses. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, L743-L748	1.8	3
66	Temperature-induced solid-phase amorphization of stishovite. <i>Physics-Uspekhi</i> , 2002 , 45, 445-447	2.8	3
65	Transformations in amorphous solids under high pressures. <i>Physics-Uspekhi</i> , 1999 , 42, 1059-1062	2.8	3
64	Late stages of phase separation in Al1-xSix solid solutions. <i>Physical Review B</i> , 1996 , 53, 11304-11306	3.3	3
63	High pressure solid state amorphization of Si, Ge and solid solutions Si:GaAs, Ge:GaSb. <i>High Pressure Research</i> , 1994 , 13, 47-49	1.6	3
62	High pressure influence on the kinetics of solidification of the supercooled melts Pb(In). <i>High Pressure Research</i> , 1991 , 6, 325-332	1.6	3
61	Phase transformations in liquids and the liquidgas transition in fluids at supercritical pressures. <i>Uspekhi Fizicheskikh Nauk</i> , 2017 , 187, 1028-1032	0.5	3
60	Thermodynamic heterogeneity and crossover in the supercritical state of matter. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 225401	1.8	3
59	Experimental study of water thermodynamics up to 1.2 GPa and 473 K. <i>Journal of Chemical Physics</i> , 2020 , 152, 154501	3.9	3
58	Graphitization and preparation of diamond in an amorphous carbon material at high pressures and temperatures. <i>Inorganic Materials</i> , 2017 , 53, 154-159	0.9	2
57	Anomalous vacuum energy and stability of a quantum liquid. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 12LT01	1.8	2
56	Measurement of bitumen viscosity in a room-temperature drop experiment: student education, public outreach and modern science in one. <i>Physics Education</i> , 2014 , 49, 406-411	0.8	2
55	On the 50th anniversary of the L F Vereshchagin Institute for High Pressure Physics, RAS (Scientific outreach session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2008). <i>Physics-Uspekhi</i> , 2008 , 51, 1055-1083	2.8	2
54	High-Pressure Structural Transformations of Carbyne. <i>Inorganic Materials</i> , 2005 , 41, 950-954	0.9	2
53	Quadrupole effects and electron-phonon interaction in the non-equilibrium superconductors Al1-xSix. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 9167-9178	1.8	2

52	Galvanomagnetic properties of the Al1 $\mbox{\sc B}$ Six nonequilibrium substitutional solid solutions. <i>Physics of the Solid State</i> , 1999 , 41, 1-7	0.8	2
51	Enhancement of superconductivity in vicinity of lattice instability in Al1-xSix. <i>Ferroelectrics</i> , 1996 , 177, 17-25	0.6	2
50	Can glassforming liquids be 'simple'?. Uspekhi Fizicheskikh Nauk, 2019, 189, 665-672	0.5	2
49	Phase Transformations in C60 Fullerene with Iron and Aluminum at High Pressures and Temperatures. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2020 , 84, 851-856	0.4	2
48	Extended Defects in Graphene and Their Contribution to the Excess Specific Heat at High Temperatures. <i>Physical Review Letters</i> , 2021 , 126, 165501	7.4	2
47	Disordering in Pyridine at High Pressures. <i>JETP Letters</i> , 2019 , 110, 603-606	1.2	2
46	Formation of carbides in the interaction of Fe and Al with fullerenes at high pressures and high temperatures. <i>Materials Letters</i> , 2021 , 299, 130093	3.3	2
45	The influence of metals on the phase transformations of fullerenes at high pressure and high temperatures. <i>Materials Letters</i> , 2022 , 318, 132199	3.3	2
44	Quantum Isotope Effect in Silicon at Low Temperatures. <i>Journal of Experimental and Theoretical Physics</i> , 2019 , 128, 207-211	1	1
43	Fluctuation-dissipation theorem and the dielectric response in supercooled liquids. <i>Journal of Chemical Physics</i> , 2015 , 142, 104505	3.9	1
42	Mechanism of universal conductance fluctuations. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 35LT	02 1.8	1
41	Structure of the Al90Y10 Alloy Formed upon Pressure Solidification. <i>Russian Metallurgy (Metally)</i> , 2019 , 2019, 135-138	0.5	1
40	Single-crystal growth of the high-pressure phase B2O3 II. Crystallography Reports, 2012, 57, 332-335	0.6	1
39	Metallization in the molten and solid state and phase diagrams of the GeSe2 and GeS2 under high pressure. <i>JETP Letters</i> , 2014 , 100, 451-454	1.2	1
38	New Data on Compressibility of Molecular Fullerites C60 and C70. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2010 , 18, 406-411	1.8	1
37	Elastic properties of metastable crystalline and amorphous gasb-ge semiconductors synthesized under high pressure. <i>High Pressure Research</i> , 2003 , 23, 187-190	1.6	1
36	Kinetic Properties of Orientational Phase Transition in Polymerized States of Fullerites C60. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2005 , 12, 259-262	1.8	1
35	Acoustic Microscopy and Surface Brillouin Scattering of Amorphous Carbon Pressure-Synthesized From C60. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 675, 1		1

34	The method of volumetric measurements under high pressure I. Qualitative approach. <i>High Pressure Research</i> , 1994 , 12, 297-300	1.6	1
33	The method of volumetric measurements under high pressure. II. Quantitative measurements. <i>High Pressure Research</i> , 1994 , 13, 61-64	1.6	1
32	Peculiarity of the amorphous state obtained by rapid quenching from melt under high pressure. High Pressure Research, 1990 , 4, 540-542	1.6	1
31	New Pressure-Induced Phase Transitions in Bismuthinite. <i>JETP Letters</i> , 2021 , 114, 470-474	1.2	1
30	High-Precision Studies of the Compressibility and Relaxation of g-As2S3 Glasses at High Hydrostatic Pressures up to 8.6 GPa. <i>Journal of Experimental and Theoretical Physics</i> , 2020 , 130, 571-578	1	1
29	Hierarchy of Times for the Establishment of the Gibbs Distribution. <i>Doklady Physics</i> , 2020 , 65, 379-382	0.8	1
28	The quantum mechanics of viscosity. <i>Physics Today</i> , 2021 , 74, 66-67	0.9	1
27	"Lost in Translation": what do the negative values of effective Gruneisen parameters mean in shock-wave experiments? (Extended comment on "Shock compression of porous metals and silicates" by A.B. Medvedev and R.F. Trunin, Usp. Fiz. Nauk 182 829 (2012)). <i>Uspekhi Fizicheskikh</i>	0.5	1
26	Similarity between the kinematic viscosity of quark-gluon plasma and liquids at the viscosity minimum. <i>SciPost Physics</i> , 2021 , 10,	6.1	1
25	Compressibility, Electrical Conductivity, and Crystallization of Glassy Selenium at a High Pressure. Journal of Experimental and Theoretical Physics, 2018, 127, 1118-1124	1	1
24	Phase Transitions in a Mixture of Amorphous C60 and C70 Fullerene Phases at High Temperatures and Pressures. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2018 , 82, 1096-1100	0.4	1
23	Universal Features of the Electron Transport in Tungstentarbon Nanocomposites. <i>Journal of Low Temperature Physics</i> , 2018 , 192, 299-314	1.3	1
22	Non-Traditional Carbon Semiconductors Prepared from Fullerite C60 and Carbyne under High Pressure 1999 , 211, 401		1
21	Phase transitions in 1-bromoadamantane compared to 1-chloroadamantane: similarities and unique features. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 23274-23279	3.6	О
20	Kinetic Model of Softening of Glasses. <i>JETP Letters</i> , 2020 , 112, 745-751	1.2	O
19	Direct Raman Spectroscopy Observation of Quantum Isotope Effects in Isotopically Pure Germanium Single Crystals. <i>JETP Letters</i> , 2019 , 110, 687-690	1.2	О
18	Reply to "Comment on 'Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants' ". <i>Physical Review E</i> , 2015 , 91, 036102	2.4	
17	Interaction between F Ni Austenitic Alloy and Minor Amounts of Mechanically Milled C60 Fullerene at High Temperatures and Pressures. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2019 , 83, 1219-1222	0.4	

16	Synthesis of advanced fine-grained hard alloys using industrial compounds and tungsten carbide nanopowders. <i>Nanotechnologies in Russia</i> , 2014 , 9, 555-558	0.6
15	Effect of deuterium on phase transformations in fullerenes at high temperatures and high pressures. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2017 , 81, 1330-1335	0.4
14	Universal behavior of chalcogenides of rare-earth metals in the transition to a state with intermediate valence at high pressures. <i>Journal of Experimental and Theoretical Physics</i> , 2015 , 120, 107	7- ¹ 1084
13	Electro-and magnetotransport properties of disordered carbon phases synthesized from C60 fullerite at moderate pressures P syn JETP Letters, 2008 , 88, 54-58	1.2
12	Anisotropic Nanoclustered Carbon Phases Prepared from Fullerite C60 Under Non-hydrostatic High Pressure. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2005 , 12, 235-241	1.8
11	High-pressure synthesis of metastable ternary solid solutions between tetrahedral semiconductors. <i>Inorganic Materials</i> , 2000 , 36, 431-436	0.9
10	Local structure of bulk amorphous and crystalline (GaSb)1☑(Ge2)x. <i>Physical Review B</i> , 2000 , 61, 1907-19	9 13 .3
9	Nonmetal-metal transitions in liquid substances under high pressure. <i>High Pressure Research</i> , 1994 , 13, 51-54	1.6
8	Semiconductor-to-metal transition in bulk amorphous gallium antimonide under high pressure. High Pressure Research, 1994 , 13, 55-59	1.6
7	Nonequilibrium crystal-to-amorphcs phase transitions in Bigh pressure[phases SiOz and Ge(A1). High Pressure Research, 1991 , 7, 362-364	1.6
6	Intrinsic Planar Defects in Germanium and Their Contribution to the Excess Specific Heat at High Temperatures. <i>Physica Status Solidi (B): Basic Research</i> ,2100463	1.3
5	Pressure-Driven Liquid L iquid Transformations and Corresponding Bizarre Viscosity Behavior. <i>Advances in Chemical Physics</i> ,29-50	
4	Melting and decomposition of orthorhombic B6Si under high pressure. <i>High Pressure Research</i> , 2020 , 40, 488-494	1.6
3	Phase Transformations at High Pressures and Temperatures in Fullerenes with Metal Additives. Bulletin of the Russian Academy of Sciences: Physics, 2021 , 85, 765-770	0.4
2	Secondary Relaxation in Supercooled Liquid Propylene Glycol under Ultrahigh Pressures Revealed by Dielectric Spectroscopy Measurements. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 9032-9037	3.4
1	Logarithmic Relaxation of the Specific Volume and Optical Properties of GeS2 Densified Glass. Journal of Experimental and Theoretical Physics. 2022, 134, 51-59	1