Dirk Hubmacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The matrix in focus: new directions in extracellular matrix research from the 2021 ASMB hybrid meeting. Biology Open, 2022, 11, .	0.6	0
2	The quest for substrates and binding partners: A critical barrier for understanding the role of <scp>ADAMTS</scp> proteases in musculoskeletal development and disease. Developmental Dynamics, 2021, 250, 8-26.	0.8	9
3	Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Annals of the New York Academy of Sciences, 2021, 1490, 57-76.	1.8	20
4	Alternative splicing of the metalloprotease ADAMTS17 spacer regulates secretion and modulates autoproteolytic activity. FASEB Journal, 2021, 35, e21310.	0.2	7
5	Regulation of ADAMTS Proteases. Frontiers in Molecular Biosciences, 2021, 8, 701959.	1.6	39
6	The extracellular matrix glycoprotein ADAMTSL2 is increased in heart failure and inhibits TGFÎ ² signalling in cardiac fibroblasts. Scientific Reports, 2021, 11, 19757.	1.6	20
7	The "other―15–40%: The Role of Non ollagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. Journal of Orthopaedic Research, 2020, 38, 23-35.	1.2	41
8	A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix. Matrix Biology, 2020, 88, 1-18.	1.5	35
9	Stable Knockdown of Genes Encoding Extracellular Matrix Proteins in the C2C12 Myoblast Cell Line Using Small-Hairpin (sh)RNA. Journal of Visualized Experiments, 2020, , .	0.2	2
10	A novel pathogenic missense ADAMTS17 variant that impairs secretion causes Weill-Marchesani Syndrome with variably dysmorphic hand features. Scientific Reports, 2020, 10, 10827.	1.6	13
11	The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases. Biomolecules, 2020, 10, 596.	1.8	27
12	Cell-Based Interaction Analysis of ADAMTS Proteases and ADAMTS-Like Proteins with Fibrillin Microfibrils. Methods in Molecular Biology, 2020, 2043, 195-206.	0.4	1
13	TgfÎ ² signaling is required for tenocyte recruitment and functional neonatal tendon regeneration. ELife, 2020, 9, .	2.8	66
14	Interactions between lysyl oxidases and ADAMTS proteins suggest a novel crosstalk between two extracellular matrix families. Matrix Biology, 2019, 75-76, 114-125.	1.5	17
15	Disruption of the Extracellular Matrix Progressively Impairs Central Nervous System Vascular Maturation Downstream of β-Catenin Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1432-1447.	1.1	14
16	Limb- and tendon-specific Adamtsl2 deletion identifies a role for ADAMTSL2 in tendon growth in a mouse model for geleophysic dysplasia. Matrix Biology, 2019, 82, 38-53.	1.5	21
17	Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Scientific Reports, 2017, 7, 41871.	1.6	56

18 Pathology of the Elastic Matrix. , 2016, , 31-80.

DIRK HUBMACHER

#	Article	IF	CITATIONS
19	<i>Adamtsl2</i> deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia – a novel mouse model providing insights into geleophysic dysplasia. DMM Disease Models and Mechanisms, 2015, 8, 487-499.	1.2	56
20	ADAMTS proteins as modulators of microfibril formation and function. Matrix Biology, 2015, 47, 34-43.	1.5	130
21	Disruption of murine <i>Adamtsl4</i> results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Human Molecular Genetics, 2015, 24, ddv399.	1.4	41
22	Human Eye Development Is Characterized by Coordinated Expression of Fibrillin Isoforms. Investigative Ophthalmology and Visual Science, 2014, 55, 7934-7944.	3.3	33
23	Heparin/heparan sulfate controls fibrillinâ€1, â€2 and â€3 selfâ€interactions in microfibril assembly. FEBS Letters, 2014, 588, 2890-2897.	1.3	38
24	Early Fibrillin-1 Assembly Monitored through a Modifiable Recombinant Cell Approach. Biomacromolecules, 2014, 15, 1456-1468.	2.6	17
25	Nonselective Assembly of Fibrillin 1 and Fibrillin 2 in the Rodent Ocular Zonule and in Cultured Cells: Implications for Marfan Syndrome. , 2013, 54, 8337.		43
26	The biology of the extracellular matrix. Current Opinion in Rheumatology, 2013, 25, 65-70.	2.0	113
27	Homocysteine Modifies Structural and Functional Properties of Fibronectin and Interferes with the Fibronectin–Fibrillin-1 Interaction. Biochemistry, 2011, 50, 5322-5332.	1.2	29
28	Fibrillin-3 expression in human development. Matrix Biology, 2011, 30, 43-52.	1.5	61
29	Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function. Cellular and Molecular Life Sciences, 2011, 68, 3137-3148.	2.4	82
30	Classical and Neonatal Marfan Syndrome Mutations in Fibrillin-1 Cause Differential Protease Susceptibilities and Protein Function. Journal of Biological Chemistry, 2011, 286, 32810-32823.	1.6	45
31	Microfibrils and Fibrillin. , 2011, , 233-265.		12
32	Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-β. Laboratory Investigation, 2010, 90, 739-752.	1.7	58
33	Functional Consequences of Homocysteinylation of the Elastic Fiber Proteins Fibrillin-1 and Tropoelastin. Journal of Biological Chemistry, 2010, 285, 1188-1198.	1.6	40
34	Mutations in fibrillinâ€1 leading to classical and neonatal Marfan syndrome cause differential protease susceptibilities and protein function. FASEB Journal, 2010, 24, 480.4.	0.2	0
35	Fibrillin Assembly Requires Fibronectin. Molecular Biology of the Cell, 2009, 20, 846-858.	0.9	210
36	One More Piece in the Fibrillin Puzzle. Structure, 2009, 17, 635-636.	1.6	3

#	Article	IF	CITATIONS
37	Fibrillins, Fibulins, and Matrix-Associated Glycoprotein Modulate the Kinetics and Morphology of <i>in Vitro</i> Self-Assembly of a Recombinant Elastin-like Polypeptide. Biochemistry, 2008, 47, 12601-12613.	1.2	74
38	Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6548-6553.	3.3	74
39	Fibrillin-1 Interactions with Fibulins Depend on the First Hybrid Domain and Provide an Adaptor Function to Tropoelastin. Journal of Biological Chemistry, 2007, 282, 8935-8946.	1.6	100
40	Iron-uptake in the Euryarchaeon Halobacterium salinarum. BioMetals, 2007, 20, 539-547.	1.8	13
41	Fibrillins: From Biogenesis of Microfibrils to Signaling Functions. Current Topics in Developmental Biology, 2006, 75, 93-123.	1.0	93
42	Modification of the Structure and Function of Fibrillin-1 by Homocysteine Suggests a Potential Pathogenetic Mechanism in Homocystinuria. Journal of Biological Chemistry, 2005, 280, 34946-34955.	1.6	34
43	Effects of Iron Limitation on the Respiratory Chain and the Membrane Cytochrome Pattern of the Furvarchaeon Halobacterium salinarum, Biological Chemistry, 2003, 384, 1565-73	1.2	8