List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials, 2008, 29, 3393-3399.	5.7	677
2	Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Advanced Materials, 2015, 27, 7620-7637.	11.1	297
3	Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials, 2009, 30, 3637-3644.	5.7	238
4	Conducting polymer-hydrogels for medical electrode applications. Science and Technology of Advanced Materials, 2010, 11, 014107.	2.8	221
5	Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering, 2014, 7, 15.	4.8	211
6	Substrate dependent stability of conducting polymer coatings on medical electrodes. Biomaterials, 2012, 33, 5875-5886.	5.7	175
7	Conductive Hydrogels: Mechanically Robust Hybrids for Use as Biomaterials. Macromolecular Bioscience, 2012, 12, 494-501.	2.1	168
8	Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomaterialia, 2010, 6, 63-71.	4.1	163
9	Conductive hydrogels with tailored bioactivity for implantable electrode coatings. Acta Biomaterialia, 2014, 10, 1216-1226.	4.1	102
10	Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes. Advanced Healthcare Materials, 2017, 6, 1601177.	3.9	90
11	Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes. Journal of Biomedical Materials Research - Part A, 2014, 102, 2743-2754.	2.1	77
12	Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomaterials Science and Engineering, 2021, 7, 4136-4163.	2.6	66
13	Development of bioactive conducting polymers for neural interfaces. Expert Review of Medical Devices, 2010, 7, 35-49.	1.4	64
14	Improving Cochlear Implant Properties Through Conductive Hydrogel Coatings. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 411-418.	2.7	62
15	Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through MWNT incorporation. Journal of Materials Science: Materials in Medicine, 2008, 19, 1625-1629.	1.7	60
16	Living Bioelectronics: Strategies for Developing an Effective Longâ€īerm Implant with Functional Neural Connections. Advanced Functional Materials, 2018, 28, 1702969.	7.8	60
17	Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomaterials Science, 2019, 7, 1372-1385.	2.6	57
18	Considerations for hydrogel applications to neural bioelectronics. Journal of Materials Chemistry B, 2019, 7, 1625-1636.	2.9	54

#	Article	IF	CITATIONS
19	Actively controlled local drug delivery using conductive polymer-based devices. Applied Physics Letters, 2020, 116, .	1.5	48
20	Elastic and conductive hydrogel electrodes. Nature Biomedical Engineering, 2019, 3, 9-10.	11.6	43
21	Tissue engineered hydrogels supporting 3D neural networks. Acta Biomaterialia, 2019, 95, 269-284.	4.1	40
22	A living electrode construct for incorporation of cells into bionic devices. MRS Communications, 2017, 7, 487-495.	0.8	37
23	The biological and electrical trade-offs related to the thickness of conducting polymers for neural applications. Acta Biomaterialia, 2014, 10, 3048-3058.	4.1	36
24	Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes. Journal of Neural Engineering, 2020, 17, 026018.	1.8	36
25	Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation. Advanced Science, 2021, 8, 2004033.	5.6	34
26	Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials, 2010, 31, 886-893.	5.7	30
27	Stiffness quantification of conductive polymers for bioelectrodes. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 666-675.	2.4	29
28	Conductive Hydrogel Electrodes for Delivery of Long-Term High Frequency Pulses. Frontiers in Neuroscience, 2017, 11, 748.	1.4	29
29	Integrated electrode and high density feedthrough system for chip-scale implantable devices. Biomaterials, 2013, 34, 6109-6118.	5.7	28
30	Mind the gap: State-of-the-art technologies and applications for EEG-based brain–computer interfaces. APL Bioengineering, 2021, 5, 031507.	3.3	28
31	Thin film hydrophilic electroactive polymer coatings for bioelectrodes. Journal of Materials Chemistry B, 2013, 1, 3803.	2.9	26
32	Living electrodes: Tissue engineering the neural interface. , 2013, 2013, 6957-60.		25
33	In situ formation of poly(vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor. Journal of Tissue Engineering, 2016, 7, 204173141667713.	2.3	25
34	Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 273-287.	2.4	22
35	Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt–Ir coated electrodes: an active <i>in vitro</i> study. Journal of Neural Engineering, 2020, 17, 016015.	1.8	22
36	Hydrogels for 3D Neural Tissue Models: Understanding Cell-Material Interactions at a Molecular Level. Frontiers in Bioengineering and Biotechnology, 2020, 8, 601704.	2.0	19

#	Article	lF	CITATIONS
37	The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomaterialia, 2022, 139, 259-279.	4.1	18
38	Advances in Retinal Neuroprosthetics. , 0, , 337-356.		14
39	Direct local polymerization of poly(3,4-ethylenedioxythiophene) in rat cortex. Progress in Brain Research, 2011, 194, 263-271.	0.9	12
40	Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials. Macromolecular Bioscience, 2016, 16, 1103-1121.	2.1	12
41	Harnessing the 2D Structureâ€Enabled Viscoelasticity of Grapheneâ€Based Hydrogel Membranes for Chronic Neural Interfacing. Small Methods, 2022, 6, e2200022.	4.6	12
42	Challenges of therapeutic delivery using conducting polymers. Therapeutic Delivery, 2012, 3, 421-427.	1.2	11
43	Producing 3D neuronal networks in hydrogels for living bionic device interfaces. , 2015, 2015, 2600-3.		11
44	Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 712-722.	1.6	11
45	Comparing perilymph proteomes across species. Laryngoscope, 2018, 128, E47-E52.	1.1	11
46	Stretchable bioelectronics: Mitigating the challenges of the percolation threshold in conductive elastomers. APL Materials, 2020, 8, .	2.2	9
47	Novel Neural Interface for Vision Prosthesis Electrodes: Improving Electrical and Mechanical Properties through Layering. , 2007, , .		8
48	A low-maintenance, primary cell culture model for the assessment of carbon nanotube toxicity. Toxicological and Environmental Chemistry, 2013, 95, 1129-1144.	0.6	8
49	An Improved in vitro Model of Cortical Tissue. Frontiers in Neuroscience, 2019, 13, 1349.	1.4	8
50	Subthreshold Electrical Stimulation for Controlling Protein-Mediated Impedance Increases in Platinum Cochlear Electrode. IEEE Transactions on Biomedical Engineering, 2020, 67, 3510-3520.	2.5	8
51	Influence of Biphasic Stimulation on Olfactory Ensheathing Cells for Neuroprosthetic Devices. Frontiers in Neuroscience, 2016, 10, 432.	1.4	7
52	Adaptive biomimicry: design of neural interfaces with enhanced biointegration. Current Opinion in Biotechnology, 2021, 72, 62-68.	3.3	6
53	Are â€~next generation' bioelectronics being designed using old technologies?. Bioelectronics in Medicine, 2018, 1, 171-174.	2.0	5
54	Possibilities in bioelectronics: Super humans or science fiction?. APL Bioengineering, 2021, 5, 040401.	3.3	5

#	Article	IF	CITATIONS
55	In vitro biological assessment of electrode materials for neural interfaces. , 2015, , .		3
56	Stimulation of peripheral nerves using conductive hydrogel electrodes*. , 2018, 2018, 5475-5478.		3
57	Electrochemical stability of poly(ethylene dioxythiophene) electrodes. , 2011, , .		2
58	Freestanding, soft bioelectronics. , 2015, , .		2
59	3D Cell Culture Systems for the Development of Neural Interfaces. , 2020, , 201-236.		2
60	Flexible Networks of Patterned Conducting Polymer Nanowires for Fully Polymeric Bioelectronics. Advanced NanoBiomed Research, 2022, 2, 2100102.	1.7	2
61	Understanding the cochlear implant environment by mapping perilymph proteomes from different species. , 2016, 2016, 5237-5240.		1
62	Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes. , 2011, , 363-381.		1
63	Flexible Nanowire Conductive Elastomers for Applications in Fully Polymeric Bioelectronic Devices [*] ., 2021, 2021, 5872-5875.		1
64	CHAPTER 8. Bioactive Conducting Polymers for Optimising the Neural Interface. RSC Smart Materials, 2014, , 192-220.	0.1	0
65	The potential of conductive hydrogel electrodes at the neural interface: an interview with Rylie Green. Bioelectronics in Medicine, 2018, 1, 227-229.	2.0	0

66 Biomimetic Approaches Towards Device-Tissue Integration. , 2021, , 1-26.

0