Qianqian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress and advances in electrochromic devices exhibiting infrared modulation. Journal of Materials Chemistry A, 2022, 10, 6269-6290.	5.2	39
2	Anion Immobilization Enabled by Cationâ€Selective Separators for Dendriteâ€Free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	46
3	Progress and challenges in flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2022, 240, 111709.	3.0	31
4	Nanofiber-reinforced clay-based 2D nanofluidics for highly efficient osmotic energy harvesting. Nano Energy, 2022, 100, 107526.	8.2	32
5	Ultrathin Selfâ€Standing Covalent Organic Frameworks toward Highlyâ€Efficient Nanofluidic Osmotic Energy Generator. Advanced Functional Materials, 2022, 32, .	7.8	25
6	Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Materials Horizons, 2021, 8, 12-32.	6.4	99
7	Cation‣elective Separators for Addressing the Lithium–Sulfur Battery Challenges. ChemSusChem, 2021, 14, 792-807.	3.6	29
8	Metal organic framework derived Co3O4/Co@N–C composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 855, 157538.	2.8	30
9	Dynamic Process of Ions Transport and Cyclic Stability of WO ₃ Electrochromic Film. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 152.	0.6	3
10	Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting. Sustainable Energy and Fuels, 2021, 5, 1347-1365.	2.5	30
11	Recent advances in understanding and relieving capacity decay of lithium ion batteries with layered ternary cathodes. Sustainable Energy and Fuels, 2021, 5, 5114-5138.	2.5	11
12	Atomically Dispersed Platinum Modulated by Sulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2021, 8, 2100347.	5.6	47
13	Direct fabrication of electrochromic Ni-MOF 74 film on ITO with high-stable performance. Ionics, 2021, 27, 3655-3662.	1.2	10
14	Functional Separators Regulating Ion Transport Enabled by Metalâ€Organic Frameworks for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2102938.	7.8	119
15	Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12, 3783.	5.8	355
16	Fabrication of Vertical-Standing Co-MOF Nanoarrays with 2D Parallelogram-like Morphology for Aqueous Asymmetric Electrochemical Capacitors. Molecules, 2021, 26, 5394.	1.7	9
17	Nanoengineering of poly(3,4-ethylenedioxythiophene) for boosting electrochemical applications. Solar Energy Materials and Solar Cells, 2021, 232, 111357.	3.0	14
18	A rechargeable electrochromic energy storage device enabling effective energy recovery. Journal of Materials Chemistry A, 2021, 9, 6451-6459.	5.2	43

QIANQIAN ZHANG

#	Article	IF	CITATIONS
19	Self-Driven Infrared Electrochromic Device with Tunable Optical and Thermal Management. ACS Applied Materials & Interfaces, 2021, 13, 50319-50328.	4.0	33
20	Two-dimensional materials towards separator functionalization in advanced Li–S batteries. Nanoscale, 2021, 13, 18883-18911.	2.8	10
21	Advanced metal–organic framework-based membranes with ion selectivity for boosting electrochemical energy storage and conversion. Journal of Materials Chemistry A, 2021, 9, 25325-25340.	5.2	13
22	Integrated electrochromic supercapacitors with visual energy levels boosted by coating onto carbon nanotube conductive networks. Solar Energy Materials and Solar Cells, 2020, 206, 110330.	3.0	29
23	Nonstoichiometric tungsten oxide: structure, synthesis, and applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 861-873.	1.1	30
24	Carbon-coated Co3O4 with porosity derived from zeolite imidazole framework-67 as a bi-functional electrocatalyst for rechargeable zinc air batteries. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
25	Seamlessly conductive Co(OH) ₂ tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy and Environmental Science, 2020, 13, 3082-3092.	15.6	123
26	A binder- and carbon-free hydrogen evolution electro-catalyst in alkaline media based on nitrogen-doped Ni(OH)2 nanobelts/3D Ni foam. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	4
27	Electrochromic Nanochannels for Visual Nanofluidic Manipulation in Integrated Ionic Circuits. ACS Applied Materials & Interfaces, 2020, 12, 57314-57321.	4.0	5
28	Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review. Nanoscale, 2020, 12, 15923-15943.	2.8	42
29	Ions Transport Control in Electrochromic WO ₃ Film for the Cyclic Stability Study. Journal of the Electrochemical Society, 2020, 167, 106502.	1.3	6
30	Biomimetic temperature-gated 2D cationic nanochannels for controllable osmotic power harvesting. Nano Energy, 2020, 76, 105113.	8.2	54
31	A self-patterning multicolor electrochromic device driven by horizontal redistribution of ions. Solar Energy Materials and Solar Cells, 2020, 215, 110642.	3.0	27
32	3D porous ZnCo2O4/Co3O4 composite grown on carbon cloth as high-performance anode material for lithium-ion battery. Materials Letters, 2020, 267, 127549.	1.3	21
33	Crystal phase tuning and valence engineering in non-noble catalysts for outstanding overall water splitting. Journal of Materials Chemistry A, 2020, 8, 4524-4532.	5.2	13
34	In Situ Growth of Ni-Doped Co-MOF-74 on Ni Foam for High-Performance Electrochemical Energy Storage. Journal of the Electrochemical Society, 2020, 167, 020539.	1.3	26
35	Rod ellâ€Mimetic Photochromic Layered Ion Channels with Multiple Switchable States for Controllable Ion Transport. Chemistry - A European Journal, 2019, 25, 12795-12800.	1.7	8
36	A sandwichâ€structured separator based on in situ coated polyaniline on polypropylene membrane for improving the electrolyte wettability in lithiumâ€ion batteries. International Journal of Energy Research, 2019, 43, 8049.	2.2	7

QIANQIAN ZHANG

#	Article	IF	CITATIONS
37	An intelligent and portable power storage device able to visualize the energy status. Journal of Materials Chemistry A, 2019, 7, 23028-23037.	5.2	38
38	Cohesive Porous Co ₃ O ₄ /C Composite Derived from Zeolitic Imidazole Framework-67 (ZIF-67) Single-Source Precursor as Supercapacitor Electrode. Journal of the Electrochemical Society, 2019, 166, A960-A967.	1.3	35
39	A facile approach to suppress the sulfation in lead acid batteries using N-doped carbon derived from chitosan. Materials Letters, 2019, 247, 29-31.	1.3	21
40	Review on the Synthesis and Antioxidation of Cu Nanowires for Transparent Conductive Electrodes. Nano, 2019, 14, 1930005.	0.5	6
41	A Setaria-inflorescence-structured catalyst based on nickel–cobalt wrapped silver nanowire conductive networks for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 26566-26573.	5.2	10
42	pHâ€Resistant Nanofluidic Diode Membrane for Highâ€Performance Conversion of Salinity Gradient into Electric Energy. Energy Technology, 2019, 7, 1800952.	1.8	38
43	Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping. Journal of Alloys and Compounds, 2018, 747, 416-422.	2.8	37
44	Dynamic behaviors of inorganic all-solid-state electrochromic device: Role of potential. Electrochimica Acta, 2018, 269, 617-623.	2.6	38
45	<i>In situ</i> electrochromic efficiency of a nickel oxide thin film: origin of electrochemical process and electrochromic degradation. Journal of Materials Chemistry C, 2018, 6, 646-653.	2.7	82
46	Enhanced electrochromic performance of 2D grid-structured WO3 thin films. Thin Solid Films, 2018, 653, 188-193.	0.8	27
47	Highly Efficient Gating of Electrically Actuated Nanochannels for Pulsatile Drug Delivery Stemming from a Reversible Wettability Switch. Advanced Materials, 2018, 30, 1703323.	11.1	69
48	High capacity and performance lithium based electrochromic device via amorphous tantalum oxide protective layer. Electrochimica Acta, 2018, 280, 163-170.	2.6	25
49	Robust Sandwichâ€Structured Nanofluidic Diodes Modulating Ionic Transport for an Enhanced Electrochromic Performance. Advanced Science, 2018, 5, 1800163.	5.6	28
50	Mechanistic Insights into the Coloration, Evolution, and Degradation of NiO _{<i>x</i>} Electrochromic Anodes. Inorganic Chemistry, 2018, 57, 8874-8880.	1.9	24
51	Highâ€Performance Respirationâ€Based Biocell Using Artificial Nanochannel Regulation. Advanced Materials, 2017, 29, 1606871.	11.1	13
52	Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes. Scientific Reports, 2017, 7, 41825.	1.6	53
53	Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes. Nano Research, 2017, 10, 3715-3725.	5.8	39
54	Temperature and Voltage Dual-Responsive Ion Transport in Bilayer-Intercalated Layered Membranes with 2D Nanofluidic Channels. Journal of Physical Chemistry C, 2017, 121, 18954-18961.	1.5	23

QIANQIAN ZHANG

#	Article	IF	CITATIONS
55	Alternating current output from a photosynthesis-inspired photoelectrochemical cell. Nano Energy, 2016, 28, 188-194.	8.2	21
56	Organic/Inorganic Hybrid Nanochannels Based on Polypyrroleâ€Embedded Alumina Nanopore Arrays: pH― and Lightâ€Modulated Ion Transport. Advanced Functional Materials, 2015, 25, 2091-2098.	7.8	80
57	Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chemical Communications, 2015, 51, 12286-12289.	2.2	17
58	Underwater superoleophobic porous membrane based on hierarchical TiO ₂ nanotubes: multifunctional integration of oil–water separation, flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 2015, 3, 1279-1286.	5.2	204
59	Lightâ€Gating Titania/Alumina Heterogeneous Nanochannels with Regulatable Ion Rectification Characteristic. Advanced Functional Materials, 2014, 24, 424-431.	7.8	60
60	Heterogeneous 3-D nanotubular arrays of CdS-TiO2: efficient collections of reflection light for enhanced photoelectric output. Journal of Materials Chemistry, 2012, 22, 22120.	6.7	12
61	Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. Chemical Communications, 2012, 48, 5901.	2.2	45
62	3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. Journal of Materials Chemistry, 2011, 21, 10354.	6.7	46