Yong-Liang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932252/publications.pdf

Version: 2024-02-01

394421 330143 1,587 37 19 citations h-index papers

g-index 40 40 40 1775 docs citations times ranked citing authors all docs

37

#	Article	IF	CITATIONS
1	Biomimetic mimicry of formaldehyde-induced DNA–protein crosslinks in the confined space of a metal–organic framework. Chemical Science, 2022, 13, 4813-4820.	7.4	7
2	Pyrazine functionalization to boost the antenna effect in rare-earth metal–organic frameworks for tetracycline detection. Inorganic Chemistry Frontiers, 2022, 9, 1714-1721.	6.0	35
3	Cyclic Trinuclear Copper(I) Complex Exhibiting Aggregation-Induced Emission: A Novel Fluorescent Probe for the Selective Detection of Gold(III) Ions. Inorganic Chemistry, 2022, 61, 414-421.	4.0	17
4	A thermostable terbium(<scp>iii</scp>) complex with high fluorescence quantum yields. New Journal of Chemistry, 2022, 46, 11021-11024.	2.8	4
5	Mixed-Linker Isoreticular Zn(II) Metal–Organic Frameworks as Brønsted Acid–Base Bifunctional Catalysts for Knoevenagel Condensation Reactions. Inorganic Chemistry, 2022, 61, 8339-8348.	4.0	27
6	Aggregation-induced phosphorescence sensitization in two heptanuclear and decanuclear gold–silver sandwich clusters. Chemical Science, 2021, 12, 702-708.	7.4	16
7	Enabling photocatalytic activity of [Ru(2,2′:6′,2′′-terpyridine) ₂] ²⁺ integrate into a metal–organic framework. Materials Chemistry Frontiers, 2021, 5, 2777-2782.	d 5.9	9
8	Ultrasensitive and highly selective detection of formaldehyde ⟨i⟩via⟨/i⟩ an adenine-based biological metal–organic framework. Materials Chemistry Frontiers, 2021, 5, 2416-2424.	5.9	34
9	Enhanced Hydride Donation Achieved Molybdenum Catalyzed Direct <i>N</i> -Alkylation of Anilines or Nitroarenes with Alcohols: From Computational Design to Experiment. ACS Catalysis, 2021, 11, 10377-10382.	11.2	31
10	A microporous shp -topology metalâ€"organic framework with an unprecedented high-nuclearity Co ₁₀ -cluster for iodine capture and histidine detection. Materials Chemistry Frontiers, 2021, 5, 4300-4309.	5.9	27
11	Guest-boosted phosphorescence efficiency of a supramolecular cage. Inorganic Chemistry Frontiers, 2021, 8, 2299-2304.	6.0	12
12	Building a Pyrazole–Benzothiadiazole–Pyrazole Photosensitizer into Metal–Organic Frameworks for Photocatalytic Aerobic Oxidation. Journal of the American Chemical Society, 2021, 143, 21340-21349.	13.7	84
13	5-Fluorouracil Cocrystals with Lipophilic Hydroxy-2-Naphthoic Acids: Crystal Structures, Theoretical Computations, and Permeation Studies. Crystal Growth and Design, 2020, 20, 923-933.	3.0	14
14	Chiral 3D Coordination Polymers Consisting of Achiral Terpyridyl Precursors: from Spontaneous Resolution to Enantioenriched Induction. Chemistry - A European Journal, 2020, 26, 1936-1940.	3.3	15
15	Modulation of Solid-State Optical Properties of <i>o</i> ohydroxynaphthoic Acids through Formation of Charge Transfer Cocrystals with TCNB. Crystal Growth and Design, 2020, 20, 7492-7500.	3.0	13
16	Cr ₂ O ₇ ^{2â^²} inside Zr/Hf-based metal–organic frameworks: highly sensitive and selective detection and crystallographic evidence. Journal of Materials Chemistry C, 2020, 8, 16974-16983.	5 . 5	26
17	<p>HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4915-4949.	4.3	15
18	Self-assembly of mixed-valence and heterometallic metallocycles: efficient catalysts for the oxidation of alcohols to aldehydes in ambient air. Dalton Transactions, 2020, 49, 7304-7308.	3.3	6

#	Article	IF	Citations
19	Unexpected structural transformation into noria-like Ag13 metal clusters and a copper-doping induced boost in photoluminescence. Chemical Communications, 2020, 56, 4789-4792.	4.1	17
20	Guest effects on crystal structure and phosphorescence of a Cu ₆ L ₃ prismatic cage. Inorganic Chemistry Frontiers, 2020, 7, 1437-1444.	6.0	23
21	Cocrystals of Penciclovir with Hydroxybenzoic Acids: Synthesis, Crystal Structures, and Physicochemical Evaluation. Crystal Growth and Design, 2020, 20, 4108-4119.	3.0	9
22	Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMOF by Surface Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 4205-4210.	2.0	21
23	Bifunctional Gyroidal MOFs: Highly Efficient Lewis Base and Lewis Acid Catalysts. Chemistry - an Asian Journal, 2019, 14, 3682-3687.	3.3	13
24	Reversible Multiphase Transition in a BioMOF and Its Distinctive Luminescence Turn-On in Alcohol Vapor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38503-38509.	8.0	18
25	Exclusive Recognition of Acetone in a Luminescent BioMOF through Multiple Hydrogen-Bonding Interactions. Inorganic Chemistry, 2019, 58, 7667-7671.	4.0	39
26	Induced Fit of C ₂ H ₂ in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angewandte Chemie, 2019, 131, 8603-8607.	2.0	52
27	Induced Fit of C ₂ H ₂ in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angewandte Chemie - International Edition, 2019, 58, 8515-8519.	13.8	208
28	Cage-Interconnected Metal–Organic Framework with Tailored Apertures for Efficient C ₂ H ₄ Separation under Humid Conditions. Journal of the American Chemical Society, 2019, 141, 20390-20396.	13.7	212
29	Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coordination Chemistry Reviews, 2019, 378, 207-221.	18.8	279
30	A 3D homochiral metal–organic framework with high selective adsorption property. Inorganic Chemistry Communication, 2018, 92, 115-120.	3.9	2
31	A pair of homochiral complexes generated via spontaneous resolution: Synthesis, structures and dielectric properties. Inorganica Chimica Acta, 2018, 482, 454-459.	2.4	2
32	Two Li–Zn Cluster-Based Metal–Organic Frameworks: Strong H ₂ /CO ₂ Binding and High Selectivity to CO ₂ . Inorganic Chemistry, 2017, 56, 705-708.	4.0	23
33	Modulation of Gas Sorption Properties through Cation Exchange within an Anionic Metal–Organic Framework. ChemPlusChem, 2016, 81, 780-785.	2.8	7
34	A facile method for the synthesis of a porous cobalt oxide–carbon hybrid as a highly efficient water oxidation catalyst. Journal of Materials Chemistry A, 2016, 4, 1819-1827.	10.3	56
35	A Luminescent Microporous Metal–Organic Framework with Highly Selective CO ₂ Adsorption and Sensing of Nitro Explosives. Inorganic Chemistry, 2014, 53, 9457-9459.	4.0	99
36	A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties. Chemical Communications, 2013, 49, 1753.	4.1	54

3

#	Article	IF	CITATIONS
37	Counter-cation modulation of hydrogen and methane storage in a sodalite-type porous metal–organic framework. Chemical Communications, 2012, 48, 12002.	4.1	61