
Rosa MartÃ-n-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932054/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient IR to NIR Upconversion in Gd ₂ O ₂ S: Er ³⁺ for Photovoltaic Applications. Chemistry of Materials, 2013, 25, 1912-1921.	3.2	183
2	Incorporation and Luminescence of Yb ³⁺ in CdSe Nanocrystals. Journal of the American Chemical Society, 2013, 135, 13668-13671.	6.6	105
3	Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells. Light: Science and Applications, 2015, 4, e344-e344.	7.7	88
4	Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. Journal of Applied Physics, 2013, 114, .	1.1	85
5	Upconversion quantum yield of Er3+-doped \hat{l}^2 -NaYF4 and Gd2O2S: The effects of host lattice, Er3+ doping, and excitation spectrum bandwidth. Journal of Luminescence, 2014, 153, 281-287.	1.5	67
6	Upconversion Dynamics in Er ³⁺ â€Doped Gd ₂ O ₂ S: Influence of Excitation Power, Er ³⁺ Concentration, and Defects. Advanced Optical Materials, 2015, 3, 558-567.	3.6	66
7	Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. Nanoscale, 2016, 8, 10963-10973.	2.8	57
8	Upconversion solar cell measurements under real sunlight. Optical Materials, 2018, 84, 389-395.	1.7	51
9	Temperature and pressure dependence of the optical properties of Cr ^{3 +} -doped Gd ₃ Ga ₅ O ₁₂ nanoparticles. Nanotechnology, 2011, 22, 265707.	1.3	33
10	Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures. Nanotechnology, 2016, 27, 155707.	1.3	30
11	Mn-Doping level dependence on the magnetic response of MnxFe3â^'xO4 ferrite nanoparticles. Dalton Transactions, 2019, 48, 11480-11491.	1.6	26
12	Eu ³⁺ Luminescence in High Charge Mica: An In Situ Probe for the Encapsulation of Radioactive Waste in Geological Repositories. ACS Applied Materials & Interfaces, 2019, 11, 7559-7565.	4.0	22
13	Dye-doped biodegradable nanoparticle SiO ₂ coating on zinc- and iron-oxide nanoparticles to improve biocompatibility and for <i>in vivo</i>	2.8	22
14	Photoluminescence in ZnO:Co ²⁺ (0.01%–5%) Nanoparticles, Nanowires, Thin Films, and Single Crystals as a Function of Pressure and Temperature: Exploring Electron–Phonon Interactions. Chemistry of Materials, 2014, 26, 1100-1107.	3.2	19
15	New Trends in Nanoclay-Modified Sensors. Inorganics, 2021, 9, 43.	1.2	16
16	Optical energy gap on zinc-blende CdS nanoparticles under high pressure. High Pressure Research, 2009, 29, 482-487.	0.4	5
17	Photocatalytic activity of undoped and Mn- and Co-doped TiO2 nanocrystals incorporated in enamel coatings on stainless steel. Reaction Chemistry and Engineering, 0, , .	1.9	5
18	Exploring the local environment of the engineered nanoclay Mica-4 under hydrothermal conditions using Eu3+ as a luminescent probe. Journal of Alloys and Compounds, 2022, 921, 166086.	2.8	3

#	Article	IF	CITATIONS
19	Developing Efficient Upconverter Silicon Solar Cell Devices. , 2013, , .		1
20	Adsorptive Capture of Ionic and Non-Ionic Pollutants Using a Versatile Hybrid Amphiphilic-Nanomica. Nanomaterials, 2021, 11, 3167.	1.9	1
21	Correction to "Magnetic Study of Co-Doped Magnetosome Chains― Journal of Physical Chemistry C, 0, , .	1.5	0