Tytus Murphy

List of Publications by Citations

Source: https://exaly.com/author-pdf/7931550/tytus-murphy-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12
papers282
citations9
h-index12
g-index12
ext. papers367
ext. citations6.2
avg, IF3.39
L-index

#	Paper	IF	Citations
12	Effects of diet on brain plasticity in animal and human studies: mind the gap. <i>Neural Plasticity</i> , 2014 , 2014, 563160	3.3	120
11	Hippocampal neurogenesis in Alzheimer's disease: is there a role for dietary modulation?. <i>Journal of Alzheimer</i> Disease, 2014 , 38, 11-38	4.3	56
10	Pathogenic effects of amyotrophic lateral sclerosis-linked mutation in D-amino acid oxidase are mediated by D-serine. <i>Neurobiology of Aging</i> , 2014 , 35, 876-85	5.6	26
9	The systemic milieu as a mediator of dietary influence on stem cell function during ageing. <i>Ageing Research Reviews</i> , 2015 , 19, 53-64	12	20
8	Transcriptomic profiling of human hippocampal progenitor cells treated with antidepressants and its application in drug repositioning. <i>Journal of Psychopharmacology</i> , 2017 , 31, 338-345	4.6	13
7	The genome-wide expression effects of escitalopram and its relationship to neurogenesis, hippocampal volume, and antidepressant response. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 427-434	3.5	11
6	Inter-individual variation in genes governing human hippocampal progenitor differentiation in vitro is associated with hippocampal volume in adulthood. <i>Scientific Reports</i> , 2017 , 7, 15112	4.9	11
5	Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: cellular and epidemiological evidence. <i>Communications Biology</i> , 2020 , 3, 157	6.7	9
4	Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. <i>Molecular Psychiatry</i> , 2021 ,	15.1	9
3	Emerging Molecular Pathways Governing Dietary Regulation of Neural Stem Cells during Aging. <i>Frontiers in Physiology</i> , 2017 , 8, 17	4.6	6
2	Cellular phenotyping of hippocampal progenitors exposed to patient serum predicts conversion to Alzheimer Disease		1
1	Serum from Older Adults Increases Apoptosis and Molecular Aging Markers in Human Hippocampal		O