John D Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7931376/publications.pdf

Version: 2024-02-01

		117625	9	95266	
109	5,033	34		68	
papers	citations	h-index		g-index	
115	115	115		5309	
113	113	113		3307	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Biosynthesis of heme in mammals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 723-736.	4.1	389
2	Identification of a Human Heme Exporter that Is Essential for Erythropoiesis. Cell, 2004, 118, 757-766.	28.9	375
3	Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. New England Journal of Medicine, 2020, 382, 2289-2301.	27.0	350
4	Iron Regulates the Intracellular Degradation of Iron Regulatory Protein 2 by the Proteasome. Journal of Biological Chemistry, 1995, 270, 21645-21651.	3.4	264
5	Afamelanotide for Erythropoietic Protoporphyria. New England Journal of Medicine, 2015, 373, 48-59.	27.0	206
6	Phase 1 Trial of an RNA Interference Therapy for Acute Intermittent Porphyria. New England Journal of Medicine, 2019, 380, 549-558.	27.0	194
7	Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nature Immunology, 2020, 21, 178-185.	14.5	186
8	Acute Porphyrias in the USA: Features of 108ÂSubjects from Porphyrias Consortium. American Journal of Medicine, 2014, 127, 1233-1241.	1.5	185
9	Hemochromatosis genes and other factors contributing to the pathogenesis of porphyria cutanea tarda. Blood, 2000, 95, 1565-1571.	1.4	181
10	Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood, 2007, 109, 2618-2621.	1.4	155
11	Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2210-2215.	7.1	143
12	A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5079-5084.	7.1	124
13	Acute hepatic porphyrias: Recommendations for evaluation and longâ€term management. Hepatology, 2017, 66, 1314-1322.	7.3	122
14	Heme biosynthesis and the porphyrias. Molecular Genetics and Metabolism, 2019, 128, 164-177.	1,1	116
15	RNAi-mediated silencing of hepatic <i>Alas1</i> effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7777-7782.	7.1	99
16	Regulation of intracellular heme trafficking revealed by subcellular reporters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5144-52.	7.1	98
17	A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry, 2016, 55, 5204-5217.	2.5	89
18	Identification of the Mitochondrial Heme Metabolism Complex. PLoS ONE, 2015, 10, e0135896.	2.5	88

#	Article	IF	Citations
19	ABCB6 Mutations Cause Ocular Coloboma. American Journal of Human Genetics, 2012, 90, 40-48.	6.2	75
20	Loss-of-Function Ferrochelatase and Gain-of-Function Erythroid-Specific 5-Aminolevulinate Synthase Mutations Causing Erythropoietic Protoporphyria and X-Linked Protoporphyria in North American Patients Reveal Novel Mutations and a High Prevalence of X-Linked Protoporphyria. Molecular Medicine, 2013, 19, 26-29.	4.4	74
21	Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase. EMBO Journal, 2003, 22, 6225-6233.	7.8	72
22	Crystal Structure of the Oxygen-dependant Coproporphyrinogen Oxidase (Hem13p) of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 38960-38968.	3.4	71
23	Clinical, Biochemical, and Genetic Characterization of North American Patients With Erythropoietic Protoporphyria and X-linked Protoporphyria. JAMA Dermatology, 2017, 153, 789.	4.1	70
24	Mutation in human <i>CLPX</i> elevates levels of <i>Î-</i> aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8045-E8052.	7.1	69
25	TMEM14C is required for erythroid mitochondrial heme metabolism. Journal of Clinical Investigation, 2014, 124, 4294-4304.	8.2	62
26	Crystal Structure ofTritrichomonas foetusInosine-5â€~-monophosphate Dehydrogenase and the Enzymeâ^Product Complexâ€. Biochemistry, 1997, 36, 10666-10674.	2.5	57
27	Crystal Structure of a Biliverdin IXα Reductase Enzyme–Cofactor Complex. Journal of Molecular Biology, 2002, 319, 1199-1210.	4.2	56
28	Glutamine via \hat{l}_{\pm} -ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis. Blood, 2018, 132, 987-998.	1.4	53
29	Liver Transplantation for Acute Intermittent Porphyria: Biochemical and Pathologic Studies of the Explanted Liver. Molecular Medicine, 2015, 21, 487-495.	4.4	51
30	Transdermal estrogen replacement therapy in postmenopausal women previously treated for porphyria cutanea tarda. Translational Research, 2000, 136, 482-488.	2.3	40
31	Down-regulation of hepcidin in porphyria cutanea tarda. Blood, 2008, 112, 4723-4728.	1.4	38
32	Hemozoin produced by mammals confers heme tolerance. ELife, 2019, 8, .	6.0	38
33	Characterization and crystallization of human uroporphyrinogen decarboxylase. Protein Science, 1997, 6, 1343-1346.	7.6	37
34	Erythropoietin signaling regulates heme biosynthesis. ELife, 2017, 6, .	6.0	36
35	Functional consequences of naturally occurring mutations in human uroporphyrinogen decarboxylase. Blood, 2001, 98, 3179-3185.	1.4	35
36	Cytochrome P450 Induction, Uroporphyrinogen Decarboxylase Depression, Porphyrin Accumulation and Excretion, and Gender Influence in a 3-Week Rat Model of Porphyria Cutanea Tarda. Toxicology and Applied Pharmacology, 1997, 147, 289-299.	2.8	34

#	Article	IF	CITATIONS
37	Structure and Mechanistic Implications of a Uroporphyrinogen III Synthaseâ "Product Complex. Biochemistry, 2008, 47, 8648-8655.	2.5	32
38	Hepatocellular Carcinoma in Acute Hepatic Porphyrias: Results from the Longitudinal Study of the U.S. Porphyrias Consortium. Hepatology, 2021, 73, 1736-1746.	7.3	32
39	Inducing iron deficiency improves erythropoiesis and photosensitivity in congenital erythropoietic porphyria. Blood, 2015, 126, 257-261.	1.4	31
40	FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. Journal of Biological Chemistry, 2018, 293, 19797-19811.	3 . 4	30
41	Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes. Journal of Biological Chemistry, 2017, 292, 16284-16299.	3.4	28
42	Cirrhosis in Hemochromatosis: Independent Risk Factors in 368 HFE p.C282Y Homozygotes. Annals of Hepatology, 2018, 17, 871-879.	1.5	25
43	The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice. Journal of Biological Chemistry, 2020, 295, 11002-11020.	3.4	25
44	Dual gene defects involving delta-aminolaevulinate dehydratase and coproporphyrinogen oxidase in a porphyria patient. British Journal of Haematology, 2006, 132, 237-243.	2.5	24
45	Energy metabolism in free-living, †large-eating' and †small-eating' women: studies using 2H218O. Brit Journal of Nutrition, 1994, 72, 21-31.	ish 2.3	23
46	Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genetics, 2018, 14, e1007665.	3.5	21
47	The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover. Journal of Biological Chemistry, 2021, 297, 100972.	3.4	20
48	Substrate Shuttling between Active Sites of Uroporphyrinogen Decarboxylase Is Not Required to Generate Coproporphyrinogen. Journal of Molecular Biology, 2009, 389, 306-314.	4.2	19
49	Mutational analysis of human uroporphyrinogen decarboxylase. BBA - Proteins and Proteomics, 1996, 1298, 294-304.	2.1	18
50	Fast track to the porphyrias. Nature Medicine, 2005, 11, 1049-1050.	30.7	17
51	Feasibility of cellular bioenergetics as a biomarker in porphyria patients. Molecular Genetics and Metabolism Reports, 2019, 19, 100451.	1.1	17
52	Identification and characterization of 40 novel hydroxymethylbilane synthase mutations that cause acute intermittent porphyria. Journal of Inherited Metabolic Disease, 2019, 42, 186-194.	3.6	17
53	Homozygous hydroxymethylbilane synthase knock-in mice provide pathogenic insights into the severe neurological impairments present in human homozygous dominant acute intermittent porphyria. Human Molecular Genetics, 2019, 28, 1755-1767.	2.9	17
54	International Porphyria Molecular Diagnostic Collaborative: an evidence-based database of verified pathogenic and benign variants for the porphyrias. Genetics in Medicine, 2019, 21, 2605-2613.	2.4	16

#	Article	IF	CITATIONS
55	Differences in energy metabolism between normal weight â€~large-eating' and â€~small-eating' women. British Journal of Nutrition, 1992, 68, 31-44.	2.3	15
56	Two novel uroporphyrinogen decarboxylase (URO-D) mutations causing hepatoerythropoietic porphyria (HEP). Translational Research, 2007, 149, 85-91.	5.0	15
57	Identification of a novel mutation in theL-ferritin IRE leading to hereditary hyperferritinemia-cataract syndrome. American Journal of Medical Genetics, Part A, 2005, 134A, 77-79.	1.2	14
58	CYP3A-inducing agents and the attenuation of uroporphyrin accumulation and excretion in a rat model of porphyria cutanea tarda. Biochemical Pharmacology, 2000, 60, 1325-1331.	4.4	13
59	Two novel mutations in TMPRSS6 associated with iron-refractory iron deficiency anemia in a mother and child. Blood Cells, Molecules, and Diseases, 2017, 65, 38-40.	1.4	13
60	GNPAT p.D519G is independently associated with markedly increased iron stores in HFE p.C282Y homozygotes. Blood Cells, Molecules, and Diseases, 2017, 63, 15-20.	1.4	13
61	Uroporphyria in the uroporphyrinogen decarboxylase-deficient mouse: Interplay with siderosis and polychlorinated biphenyl exposure. Hepatology, 2002, 36, 805-811.	7.3	11
62	Reduction of porphyrins to porphyrinogens with palladium on carbon. Analytical Biochemistry, 2009, 384, 74-78.	2.4	11
63	A method for determining \hat{I} -aminolevulinic acid synthase activity in homogenized cells and tissues. Clinical Biochemistry, 2015, 48, 788-795.	1.9	11
64	Up-Regulation of miR-195 Expression Leads to Decreased Expression of Basic Fibroblast Growth Factor in CLL Patients Treated with DNA Methylation Inhibitors Blood, 2007, 110, 3183-3183.	1.4	11
65	Uroporphyria in the Cyp1a2â^'/â^' mouse. Blood Cells, Molecules, and Diseases, 2011, 47, 249-254.	1.4	10
66	Accelerated development of uroporphyria in mice heterozygous for a deletion at the uroporphyrinogen decarboxylase locus. Journal of Biochemical and Molecular Toxicology, 2001, 15, 287-293.	3.0	9
67	Identification and characterization of 40 novel hydroxymethylbilane synthase mutations that cause acute intermittent porphyria. Journal of Inherited Metabolic Disease, 2018, 42, 186.	3.6	9
68	Results of a pilot study of isoniazid in patients with erythropoietic protoporphyria. Molecular Genetics and Metabolism, 2019, 128, 309-313.	1.1	9
69	Measurement of Immature Reticulocytes in Dried Blood Spots by Mass Spectrometry. Clinical Chemistry, 2021, 67, 1071-1079.	3.2	9
70	MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
71	Evaluating the Patient-Reported Outcomes Measurement Information System scales in acute intermittent porphyria. Genetics in Medicine, 2020, 22, 590-597.	2.4	8
72	The immunometabolite itaconate inhibits heme synthesis and remodels cellular metabolism in erythroid precursors. Blood Advances, 2021, 5, 4831-4841.	5.2	8

#	Article	IF	CITATIONS
73	Attenuation of polychlorinated biphenyl induced uroporphyria by iron deprivation. Environmental Toxicology and Pharmacology, 2005, 20, 417-423.	4.0	7
74	Strong correlation of ferrochelatase enzymatic activity with Mitoferrin-1 mRNA in lymphoblasts of patients with protoporphyria. Molecular Genetics and Metabolism, 2019, 128, 391-395.	1.1	7
75	The D519G Polymorphism of Glyceronephosphate O-Acyltransferase Is a Risk Factor for Familial Porphyria Cutanea Tarda. PLoS ONE, 2016, 11, e0163322.	2.5	7
76	Measurement of Uroporphyrinogen Decarboxylase Activity. Current Protocols in Toxicology Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 00, Unit 8.4.	1.1	6
77	A pilot trial of human amniotic fluid for the treatment of COVID-19. BMC Research Notes, 2021, 14, 32.	1.4	6
78	An Inhibitor of Uroporphyrinogen Decarboxylase (URO-D) Causes Porphyria Cutanea Tarda (PCT) Blood, 2006, 108, 270-270.	1.4	6
79	Congenital Erythropoietic Porphyria, \hat{l}^2 -Thalassemia Intermedia and Thrombocytopenia Due to a GATA1 Mutation Blood, 2005, 106, 515-515.	1.4	5
80	Exome sequencing for molecular characterization of non-HFE hereditary hemochromatosis. Blood Cells, Molecules, and Diseases, 2015, 55, 101-103.	1.4	4
81	Overexpression of the peroxin Pex34p suppresses impaired acetate utilization in yeast lacking the mitochondrial aspartate/glutamate carrier Agc1p. FEMS Yeast Research, 2019, 19, .	2.3	4
82	DNA Methylation Inhibitors Upregulate MiRNA Expression in Patients with Chronic Lymphocytic Leukemia Blood, 2006, 108, 2257-2257.	1.4	4
83	Longitudinal Analysis of Erythrocyte and Plasma Protoporphyrin Levels in Patients with Protoporphyria. journal of applied laboratory medicine, The, 2018, 3, 213-221.	1.3	3
84	Safety and feasibility of using acellular sterile filtered amniotic fluid as a treatment for patients with COVID-19: protocol for a randomised, double-blinded, placebo-controlled clinical trial. BMJ Open, 2021, 11, e045162.	1.9	3
85	Interim Data from a Randomized, Placebo Controlled, Phase 1 Study of Aln-AS1, an Investigational RNAi Therapeutic for the Treatment of Acute Hepatic Porphyria. Blood, 2016, 128, 2318-2318.	1.4	3
86	Cellular Distribution of Porphyrins In Porphyria Cutanea Tarda. Blood, 2010, 116, 165-165.	1.4	3
87	Acellular human amniotic fluid protects the ischemic/reperfused rat myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2022, , .	3.2	3
88	Metal content and kinetic properties of yeast RNA lariat debranching enzyme Dbr1. Rna, 2022, 28, 927-936.	3.5	3
89	Porphyria Cutanea Tarda. Handbook of Porphyrin Science, 2013, , 219-261.	0.8	2
90	Synthesis of comb-shaped DNA using a non-nucleosidic branching phosphoramidite. Organic and Biomolecular Chemistry, 2018, 16, 4659-4664.	2.8	2

#	Article	IF	Citations
91	Harderoporphyria: Case of lifelong photosensitivity associated with compound heterozygous coproporphyrinogen oxidase (CPOX) mutations. Molecular Genetics and Metabolism Reports, 2019, 19, 100457.	1.1	2
92	Fam210b Is Required for Optimal Cellular and Mitochondrial Iron Uptake during Erythroid Differentiation. Blood, 2015, 126, 405-405.	1.4	2
93	ABCB6 Polymorphisms are not Overly Represented in Patients with Porphyria. Blood Advances, 2021, , .	5. 2	2
94	The Uroporphomethene Inhibitor Causitive for Porphyria Cutanea Tarda (PCT) Is Generated by Oxidation of Hydroxymethylbilane (HMB). Blood, 2008, 112, 3454-3454.	1.4	1
95	Global DNA Hypermethylation in Chronic Lymphocytic Leukemia Correlates with Progressive Disease Blood, 2005, 106, 5006-5006.	1.4	1
96	Target of Erythropoietin, Fam210b, Regulates Erythroid Heme Synthesis By Control of Mitochondrial Iron Import and Regulation of Fech Activity. Blood, 2018, 132, 849-849.	1.4	1
97	The Heme Biosynthesis Pathway and Clinical Manifestations of Abnormal Function. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 00, Unit 8.1.	1.1	0
98	Reply. Hepatology, 2018, 67, 803-804.	7. 3	0
99	Crystal Structure of Coproporphyrinogen Oxidase (CPO) Blood, 2004, 104, 52-52.	1.4	0
100	Clonal Marking of Mouse Hematopoietic Stem and Lymphoid Progenitor Cell Populations Blood, 2005, 106, 5544-5544.	1.4	0
101	Upregulation of SOCS-1 and Downregulation of miR-214 Correlate with Disease Course in Chronic Lymphocytic Leukemia Blood, 2006, 108, 4313-4313.	1.4	0
102	HAMP and HVJ as Candidate Modifier Genes in Type1 Hereditary Hemochromatosis with High Iron Burden and in Porphyria Cutanea Tarda (PCT) Blood, 2006, 108, 1544-1544.	1.4	0
103	Hepatic ABC Transporter Expression in A Hemochromatosis‣inked Murine Model of Porphyria Cutanea Tarda. FASEB Journal, 2008, 22, 921.21.	0.5	0
104	Identification of Two Novel Mutations in the CYB5R3 Gene in Five Cases of Type I Methemoglobinemia. Blood, 2008, 112, 3854-3854.	1.4	0
105	Inducing Iron Deficiency Dramatically Improves Erythropoiesis and Photosensitivity In Congenital Erythropoietic Porphyria (CEP). Blood, 2013, 122, 3442-3442.	1.4	0
106	Identification of Polymorphic Gnpat As a Risk Factor for Porphyria Cutanea Tarda. Blood, 2015, 126, 3353-3353.	1.4	0
107	GNPAT p.D519G is Independently Associated with Markedly Increased Iron Stores in HFE p.C282Y Homozygotes. Blood, 2016, 128, 3617-3617.	1.4	0
108	A Dominant Mutation in Mitochondrial Unfoldase CLPX Results in Erythropoietic Protoporphyria. Blood, 2016, 128, 77-77.	1.4	0

#	Article	IF	CITATIONS
109	Regulation of Erythroid Heme Synthesis By the Mitochondrial Clpx Unfoldase. Blood, 2019, 134, 427-427.	1.4	O