

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7931132/publications.pdf Version: 2024-02-01

VIIE VII

#	Article	IF	CITATIONS
1	Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. Journal of Colloid and Interface Science, 2022, 605, 710-717.	9.4	20
2	Dimensional Engineering Enables 1.31 V Openâ€Circuit Voltage for Efficient and Stable Wideâ€Bandgap Halide Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
3	Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy, 2020, 75, 104940.	16.0	15
4	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	5.8	31
5	Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters, 2018, 3, 305-306.	17.4	219
6	Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Materials Today Energy, 2018, 7, 232-238.	4.7	31
7	Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3, 1093-1100.	39.5	422
8	Formamidinium + cesium lead triiodide perovskites: Discrepancies between thin film optical absorption and solar cell efficiency. Solar Energy Materials and Solar Cells, 2018, 188, 228-233.	6.2	21
9	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	17.4	141
10	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	4.9	27
11	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	4.9	84
12	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	39.5	634
13	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	19.5	190
14	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	17.4	190
15	Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35, 223-232.	16.0	162
16	Oxygenated CdS Buffer Layers Enabling High Openâ€Circuit Voltages in Earthâ€Abundant Cu ₂ BaSnS ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601803.	19.5	102
17	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	10.3	40
18	Water Vapor Treatment of Low-Temperature Deposited SnO ₂ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2118-2124.	17.4	161

Yue Yu

#	Article	IF	CITATIONS
19	Highly Sensitive Lowâ€Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ€Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	14.9	148
20	Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm. Journal of Materials Chemistry C, 2017, 5, 10152-10157.	5.5	18
21	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	16.0	89
22	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	10.3	210
23	Close-space sulfurization of sputtered metal precursors for Cu <inf>2</inf> ZnSnS <inf>4</inf> thin-film solar cells. , 2016, , .		1
24	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	21.0	636
25	Earth-Abundant Orthorhombic BaCu ₂ Sn(Se _{<i>x</i>} S _{1–<i>x</i>}) ₄ (<i>x</i> â‰^ 0.83) Thin Film for Solar Energy Conversion. ACS Energy Letters, 2016, 1, 583-588.	17.4	65
26	Earth-abundant trigonal BaCu ₂ Sn(Se _x S _{1â^'x}) ₄ (x =) Tj ETQqO 2016, 4, 18885-18891.	0 0 rgBT 10.3	Overlock 10
27	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	3.6	114
28	Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 2016, 138, 12360-12363.	13.7	362
29	Improved Performance of Electroplated CZTS Thinâ€Film Solar Cells with Bifacial Configuration. ChemSusChem, 2016, 9, 2149-2158.	6.8	40
30	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	6.8	178
31	Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221.	21.0	487
32	CdTe solar cells using combined ZnS/CdS window layers. , 2014, , .		3
33	Effects of spin speed on the properties of spin-coated Cu <inf>2</inf> ZnSnS <inf>4</inf> thin films and solar cells based on DMSO solution. , 2014, , .		3