

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7931132/publications.pdf Version: 2024-02-01

VIIE VII

#	Article	IF	CITATIONS
1	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	21.0	636
2	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	39.5	634
3	Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221.	21.0	487
4	Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3, 1093-1100.	39.5	422
5	Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 2016, 138, 12360-12363.	13.7	362
6	Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters, 2018, 3, 305-306.	17.4	219
7	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	10.3	210
8	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	19.5	190
9	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	17.4	190
10	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	6.8	178
11	Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35, 223-232.	16.0	162
12	Water Vapor Treatment of Low-Temperature Deposited SnO ₂ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2118-2124.	17.4	161
13	Highly Sensitive Lowâ€Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ€Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	14.9	148
14	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	17.4	141
15	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	3.6	114
16	Oxygenated CdS Buffer Layers Enabling High Openâ€Circuit Voltages in Earthâ€Abundant Cu ₂ BaSnS ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601803.	19.5	102
17	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	16.0	89
18	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	4.9	84

Yue Yu

#	Article	IF	CITATIONS
19	Earth-Abundant Orthorhombic BaCu ₂ Sn(Se _{<i>x</i>} S _{1–<i>x</i>}) ₄ (<i>x</i> â‰^ 0.83) Thin Film for Solar Energy Conversion. ACS Energy Letters, 2016, 1, 583-588.	17.4	65
20	Improved Performance of Electroplated CZTS Thinâ€Film Solar Cells with Bifacial Configuration. ChemSusChem, 2016, 9, 2149-2158.	6.8	40
21	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	10.3	40
22	Earth-abundant trigonal BaCu ₂ Sn(Se _x S _{1â^'x}) ₄ (x =) Tj ETQq0 2016, 4, 18885-18891.	0 0 rgBT / 10.3	Overlock 10 32
23	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	5.8	31
24	Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Materials Today Energy, 2018, 7, 232-238.	4.7	31
25	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	4.9	27
26	Formamidinium + cesium lead triiodide perovskites: Discrepancies between thin film optical absorption and solar cell efficiency. Solar Energy Materials and Solar Cells, 2018, 188, 228-233.	6.2	21
27	Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. Journal of Colloid and Interface Science, 2022, 605, 710-717.	9.4	20
28	Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm. Journal of Materials Chemistry C, 2017, 5, 10152-10157.	5.5	18
29	Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy, 2020, 75, 104940.	16.0	15
30	Dimensional Engineering Enables 1.31 V Openâ€Circuit Voltage for Efficient and Stable Wideâ€Bandgap Halide Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
31	CdTe solar cells using combined ZnS/CdS window layers. , 2014, , .		3
32	Effects of spin speed on the properties of spin-coated Cu <inf>2</inf> ZnSnS <inf>4</inf> thin films and solar cells based on DMSO solution. , 2014, , .		3
33	Close-space sulfurization of sputtered metal precursors for Cu <inf>2</inf> ZnSnS <inf>4</inf> thin-film solar cells. , 2016, , .		1