Caroline E Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7930686/publications.pdf Version: 2024-02-01

CAROLINE F RUDNS

#	Article	IF	CITATIONS
1	Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	10
2	Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 800594.	3.7	0
3	Innate Mechanisms of Heart Regeneration. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040766.	5.5	5
4	H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development (Cambridge), 2019, 146, .	2.5	33
5	Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatric Cardiology, 2019, 40, 1410-1418.	1.3	14
6	Canonical Wnt Signaling Sets the Pace. Developmental Cell, 2019, 50, 675-676.	7.0	4
7	Deep learning enables automated volumetric assessments of cardiac function in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	24
8	Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Reports, 2019, 26, 546-554.e5.	6.4	95
9	Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Developmental Cell, 2018, 44, 433-446.e7.	7.0	203
10	Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation, 2018, 137, 2152-2165.	1.6	67
11	Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Reports, 2018, 24, 1342-1354.e5.	6.4	18
12	Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development (Cambridge), 2017, 144, 4616-4624.	2.5	34
13	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123.	6.3	139
14	TGF-Î ² Signaling Is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Reports, 2017, 20, 973-983.	6.4	19
15	Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio (<i>Devario) Tj ETQq1 1 0.7843 Cytochemistry, 2016, 64, 687-714.</i>	14 rgBT / 2.5	Overlock 10 10
16	The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development (Cambridge), 2016, 143, 113-122.	2.5	36
17	Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Developmental Cell, 2015, 34, 387-399.	7.0	217
18	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40

#	Article	lF	CITATION
19	Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6, 8146.	12.8	103
20	Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1403-1408.	7.1	216
21	A crowning achievement for deciphering coronary origins. Science, 2014, 345, 28-29.	12.6	4
22	Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature Cell Biology, 2013, 15, 1362-1369.	10.3	63
23	Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and <i>nkx2.5</i> function. Development (Cambridge), 2013, 140, 1353-1363.	2.5	90
24	Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature, 2011, 474, 645-648.	27.8	227
25	A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood, 2009, 113, 5776-5782.	1.4	87