Caroline E Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7930686/publications.pdf Version: 2024-02-01

CADOLINE F RUDNS

#	Article	IF	CITATIONS
1	Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature, 2011, 474, 645-648.	27.8	227
2	Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Developmental Cell, 2015, 34, 387-399.	7.0	217
3	Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1403-1408.	7.1	216
4	Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Developmental Cell, 2018, 44, 433-446.e7.	7.0	203
5	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123.	6.3	139
6	Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6, 8146.	12.8	103
7	Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Reports, 2019, 26, 546-554.e5.	6.4	95
8	Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and <i>nkx2.5</i> function. Development (Cambridge), 2013, 140, 1353-1363.	2.5	90
9	A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood, 2009, 113, 5776-5782.	1.4	87
10	Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation, 2018, 137, 2152-2165.	1.6	67
11	Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature Cell Biology, 2013, 15, 1362-1369.	10.3	63
12	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
13	The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development (Cambridge), 2016, 143, 113-122.	2.5	36
14	Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development (Cambridge), 2017, 144, 4616-4624.	2.5	34
15	H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development (Cambridge), 2019, 146, .	2.5	33
16	Deep learning enables automated volumetric assessments of cardiac function in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	24
17	TGF-β Signaling Is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Reports, 2017, 20, 973-983.	6.4	19
18	Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Reports, 2018, 24, 1342-1354.e5.	6.4	18

CAROLINE E BURNS

#	Article	IF	CITATIONS
19	Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatric Cardiology, 2019, 40, 1410-1418.	1.3	14
20	Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio (<i>Devario) Tj ETQq0 0 0 rgBT Cytochemistry, 2016, 64, 687-714.</i>	Overlock 2.5	10 Tf 50 70 10
21	Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	10
22	Innate Mechanisms of Heart Regeneration. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040766.	5.5	5
23	A crowning achievement for deciphering coronary origins. Science, 2014, 345, 28-29.	12.6	4
24	Canonical Wnt Signaling Sets the Pace. Developmental Cell, 2019, 50, 675-676.	7.0	4
25	Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 800594.	3.7	0