Maud Ibc Langton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7930659/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hierarchical propagation of structural features in protein nanomaterials. Nanoscale, 2022, 14, 2502-2510.	2.8	6
2	Faba Bean Fractions for 3D Printing of Protein-, Starch- and Fibre-Rich Foods. Processes, 2022, 10, 466.	1.3	13
3	The Effects of High Fiber Rye, Compared to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications for Weight Loss and Metabolic Risk Factors (the RyeWeight) Tj ETQq1	1 0 .7 843	14 8gBT /Ove
4	Effect of starch and fibre on faba bean protein gel characteristics. Food Hydrocolloids, 2022, 131, 107741.	5.6	17
5	Protein Nanofibrils for Sustainable Food–Characterization and Comparison of Fibrils from a Broad Range of Plant Protein Isolates. ACS Food Science & Technology, 2021, 1, 854-864.	1.3	27
6	Mixed legume systems of pea protein and unrefined lentil fraction: Textural properties and microstructure. LWT - Food Science and Technology, 2021, 144, 111212.	2.5	12
7	Variation in Dairy Milk Composition and Properties Has Little Impact on Cheese Ripening: Insights from a Traditional Swedish Long-Ripening Cheese. Dairy, 2021, 2, 336-355.	0.7	3
8	A hypocaloric diet rich in high fiber rye foods causes greater reduction in body weight and body fat than a diet rich in refined wheat: A parallel randomized controlled trial in adults with overweight and obesity (the RyeWeight study). Clinical Nutrition ESPEN, 2021, 45, 155-169.	0.5	11
9	Gelation of faba bean proteins - Effect of extraction method, pH and NaCl. Food Hydrocolloids, 2020, 103, 105622.	5.6	44
10	Potato Protein Nanofibrils Produced from a Starch Industry Sidestream. ACS Sustainable Chemistry and Engineering, 2020, 8, 1058-1067.	3.2	35
11	The role of key process steps on microstructural organisation of fat globules and lipid profiles in UHT milk processed in a pilot plant unit. International Dairy Journal, 2020, 109, 104741.	1.5	3
12	Product Quality during the Storage of Foods with Insects as an Ingredient: Impact of Particle Size, Antioxidant, Oil Content and Salt Content. Foods, 2020, 9, 791.	1.9	6
13	Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites. Scientific Reports, 2020, 10, 6146.	1.6	10
14	Mealworms as Food Ingredient—Sensory Investigation of a Model System. Foods, 2019, 8, 319.	1.9	15
15	The Effect of Calcium, Citrate, and Urea on the Stability of Ultra-High Temperature Treated Milk: A Full Factorial Designed Study. Foods, 2019, 8, 418.	1.9	11
16	Protein nanofibrils: Preparation, properties, and possible applications in industrial nanomaterials. , 2019, , 29-63.		19
17	Changes in stability and shelf-life of ultra-high temperature treated milk during long term storage at different temperatures. Heliyon, 2019, 5, e02431.	1.4	31
18	Increased release of carotenoids and delayed in vitro lipid digestion of high pressure homogenized tomato and pepper emulsions. Food Chemistry, 2019, 285, 282-289.	4.2	21

#	Article	IF	CITATIONS
19	Interactive effects of casein micelle size and calcium and citrate content on rennetâ€induced coagulation in bovine milk. Journal of Texture Studies, 2019, 50, 508-519.	1.1	17
20	Self-assembly of plant protein fibrils interacting with superparamagnetic iron oxide nanoparticles. Scientific Reports, 2019, 9, 8939.	1.6	20
21	Lipolysis and Oxidation in Ultraâ€High Temperature Milk Depend on Sampling Month, Storage Duration, and Temperature. Journal of Food Science, 2019, 84, 1045-1053.	1.5	11
22	Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts. Foods, 2019, 8, 95.	1.9	65
23	On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology. RSC Advances, 2018, 8, 6915-6924.	1.7	51
24	In search for protein sources: Evaluating an alternative to the traditional fish feed for Arctic charr () Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5(
25	Protein/Protein Nanocomposite Based on Whey Protein Nanofibrils in a Whey Protein Matrix. ACS Sustainable Chemistry and Engineering, 2018, 6, 5462-5469.	3.2	26
26	Impact of food processing on rye product properties and their in vitro digestion. European Journal of Nutrition, 2018, 57, 1651-1666.	1.8	23
27	Influence of seasonal variation and ultra high temperature processing on lipid profile and fat globule structure of Swedish cow milk. Food Chemistry, 2018, 239, 848-857.	4.2	16
28	Larger particle size of oat bran inhibits degradation and lowers extractability of β-glucan in sourdough bread – Potential implications for cholesterol-lowering properties inÁvivo. Food Hydrocolloids, 2018, 77, 49-56.	5.6	9
29	Appetite and Subsequent Food Intake Were Unaffected by the Amount of Sourdough and Rye in Soft Bread—A Randomized Cross-Over Breakfast Study. Nutrients, 2018, 10, 1594.	1.7	5
30	Rye and health - Where do we stand and where do we go?. Trends in Food Science and Technology, 2018, 79, 78-87.	7.8	66
31	Short communication: Variation in the composition and properties of Swedish raw milk for ultra-high-temperature processing. Journal of Dairy Science, 2017, 100, 2582-2590.	1.4	14
32	Changes in proteins, physical stability and structure in directly heated UHT milk during storage at different temperatures. International Dairy Journal, 2017, 71, 60-75.	1.5	64
33	Forest biomass waste as a potential innovative source for rearing edible insects for food and feed – A review. Innovative Food Science and Emerging Technologies, 2017, 41, 193-205.	2.7	45
34	Impact of sourdough fermentation on appetite and postprandial metabolic responses – a randomised cross-over trial with whole grain rye crispbread. British Journal of Nutrition, 2017, 118, 686-697.	1.2	18
35	Quality of bread baked from frozen dough – effects of rye, and sugar content, kneading time and proofing profile. LWT - Food Science and Technology, 2016, 68, 626-633.	2.5	16
36	Effects of added inulin and wheat gluten on structure of rye porridge. LWT - Food Science and Technology, 2016, 66, 211-216.	2.5	8

#	Article	IF	CITATIONS
37	Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLoS ONE, 2016, 11, e0147791.	1.1	180
38	Effects of Unfermented and Fermented Whole Grain Rye Crisp Breads Served as Part of a Standardized Breakfast, on Appetite and Postprandial Glucose and Insulin Responses: A Randomized Cross-over Trial. PLoS ONE, 2015, 10, e0122241.	1.1	35
39	Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes. Carbohydrate Polymers, 2015, 130, 388-397.	5.1	44
40	Current potential and limitations of immunolabeling in cereal grain research. Trends in Food Science and Technology, 2015, 41, 105-117.	7.8	1
41	Bran Particle Size Influence on Pasta Microstructure, Water Distribution, and Sensory Properties. Cereal Chemistry, 2015, 92, 617-623.	1.1	24
42	Multi-scale characterization of pasta during cooking using microscopy and real-time magnetic resonance imaging. Food Research International, 2014, 66, 132-139.	2.9	22
43	Mathematical modeling of the viscosity of tomato, broccoli and carrot purees under dynamic conditions. Journal of Food Engineering, 2014, 124, 35-42.	2.7	9
44	Microstructure and water distribution of commercial pasta studied by microscopy and 3D magnetic resonance imaging. Food Research International, 2014, 62, 644-652.	2.9	18
45	Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH. BMC Oral Health, 2013, 13, 4.	0.8	11
46	Impact of long-term frozen storage on the dynamics of water and ice in wheat bread. Journal of Cereal Science, 2013, 57, 120-124.	1.8	30
47	Long-term frozen storage of wheat bread and dough – Effect of time, temperature and fibre on sensory quality, microstructure and state of water. Journal of Cereal Science, 2013, 57, 125-133.	1.8	39
48	Changes in Salt Solubility and Microstructure of Proteins from Herring (Clupea harengus) after pH-Shift Processing. Journal of Agricultural and Food Chemistry, 2012, 60, 7965-7972.	2.4	29
49	Structural design of natural plant-based foods to promote nutritional quality. Trends in Food Science and Technology, 2012, 24, 47-59.	7.8	16
50	Starch Microstructure and Starch Hydrolysis in Barley and Oat Tempe During In Vitro Digestion. Food Digestion, 2012, 3, 53-62.	0.9	8
51	Rheology and Microstructure of Carrot and Tomato Emulsions as a Result of Highâ€Pressure Homogenization Conditions. Journal of Food Science, 2011, 76, E130-40.	1.5	75
52	Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 2011, 91, 207-217.	1.7	145
53	Processing of tomato: impact on <i>in vitro</i> bioaccessibility of lycopene and textural properties. Journal of the Science of Food and Agriculture, 2010, 90, 1665-1672.	1.7	56
54	Transparency and wettability of PVP/PDMSâ€iPN synthesized in different organic solvents. Journal of Applied Polymer Science, 2009, 114, 1828-1839.	1.3	15

#	Article	IF	CITATIONS
55	Mechanical and Thermal Pretreatments of Crushed Tomatoes: Effects on Consistency andâ€, <i>In Vitro</i> â€,Accessibility of Lycopene. Journal of Food Science, 2009, 74, E386-95.	1.5	41
56	Thermal pretreatments of carrot pieces using different heating techniques: Effect on quality related aspects. Innovative Food Science and Emerging Technologies, 2009, 10, 522-529.	2.7	58
57	Designing structure into food. Special Publication - Royal Society of Chemistry, 2009, , 1-12.	0.0	0
58	Confocal fluorescence microscopy (CLSM) for food structure characterisation. , 2007, , 232-260.		11
59	Simultaneous analysis of the structural and mechanical changes during large deformation of whey protein isolate/gelatin gels at the macro and micro levels. Food Hydrocolloids, 2007, 21, 409-419.	5.6	34
60	Effect of emulsifiers on the aggregation of \hat{l}^2 -lactoglobulin. Special Publication - Royal Society of Chemistry, 2007, , 369-375.	0.0	2
61	Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids and Surfaces B: Biointerfaces, 2006, 53, 9-14.	2.5	59
62	The function of α-crystalline emulsifiers on expanding foam surfaces. Food Hydrocolloids, 2004, 18, 655-663.	5.6	28
63	Effects of Ca- and Na-lignosulfonate on starch gelatinization and network formation. Carbohydrate Polymers, 2004, 57, 369-377.	5.1	24
64	Differences in amylose aggregation and starch gel formation with emulsifiers. Carbohydrate Polymers, 2004, 58, 7-13.	5.1	68
65	Effect of Microstructure on Sensory Perception of Particulate Gels. , 2004, , 18-28.		1
66	Wheat Starch Gelatinization — the Effects of Sucrose, Emulsifier and the Physical State of the Emulsifier. Starch/Staerke, 2003, 55, 150-161.	1.1	59
67	Determination of temperature dependent structure evolution by fast-Fourier transform at late stage spinodal decomposition in bicontinuous biopolymer mixtures. Journal of Chemical Physics, 2002, 116, 10536-10546.	1.2	30
68	Microstructures of β-lactoglobulin/amylopectin gels on different length scales and their significance for rheological properties. Food Hydrocolloids, 2002, 16, 111-126.	5.6	42
69	Dynamic measurements of β-lactoglobulin structures during aggregation, gel formation and gel break-up in mixed biopolymer systems. Food Hydrocolloids, 2002, 16, 477-488.	5.6	43
70	Microwave and convective dehydration of ethanol treated and frozen apple - physical properties and drying kinetics. International Journal of Food Science and Technology, 2002, 37, 603-614.	1.3	42
71	Effects of Combined Osmotic and Microwave Dehydration of Apple on Texture, Microstructure and Rehydration Characteristics. LWT - Food Science and Technology, 2001, 34, 95-101.	2.5	122
72	Microwave heat treatment of apple before air dehydration – effects on physical properties and microstructure. Journal of Food Engineering, 2000, 46, 173-182.	2.7	56

#	Article	IF	CITATIONS
73	Dynamic analyses of sensory and microstructural properties of cream cheese. Food Chemistry, 2000, 71, 363-378.	4.2	65
74	New Approaches to Characterizing Food Microstructures. MRS Bulletin, 2000, 25, 30-36.	1.7	26
75	Mechanical Properties and Microstructure of Heat-set Whey Protein Emulsion Gels: Effect of Emulsifiers. LWT - Food Science and Technology, 2000, 33, 299-307.	2.5	76
76	Microstructure and image analysis of mayonnaises. Food Hydrocolloids, 1999, 13, 113-125.	5.6	64
77	Rheology and Structure of Heat-Treated Pasta Dough: Influence of Water Content and Heating Rate. LWT - Food Science and Technology, 1999, 32, 154-161.	2.5	20
78	Influence of the microstructure on the sensory quality of whey protein gels. Food Hydrocolloids, 1997, 11, 217-230.	5.6	25
79	Texture as a reflection of microstructure. Food Quality and Preference, 1996, 7, 185-191.	2.3	24
80	43. Influence of microstructure on the sensory quality. Food Quality and Preference, 1996, 7, 319-320.	2.3	0
81	Image analysis of particulate whey protein gels. Food Hydrocolloids, 1996, 10, 179-191.	5.6	67
82	Small and large deformation studies of protein gels. Journal of Rheology, 1995, 39, 1445-1450.	1.3	28
83	Image analysis determination of particle size distribution. Food Hydrocolloids, 1993, 7, 11-22.	5.6	19
84	Microstructure and rheological behaviour of particulate β-lactoglobulin gels. Food Hydrocolloids, 1993, 7, 195-212.	5.6	162
85	Inhomogeneous biopolymer gels. Makromolekulare Chemie Macromolecular Symposia, 1993, 76, 283-290.	0.6	3
86	Inhomogeneous fine-stranded \hat{I}^2 -lactoglobulin gels. Food Hydrocolloids, 1992, 6, 455-470.	5.6	88
87	Fine-stranded and particulate gels of β-lactoglobulin and whey protein at varying pH. Food Hydrocolloids, 1992, 5, 523-539.	5.6	378
88	Filamentous structures of bovine myosin in diluted suspensions and gels. Journal of the Science of Food and Agriculture, 1988, 42, 355-369.	1.7	23
89	Formation of two types of gels from bovine myosin. Journal of the Science of Food and Agriculture, 1986, 37, 69-84.	1.7	141
90	Microstructural evolution of mixed gels and their rheological behaviour. Special Publication - Royal Society of Chemistry, 0, , 26-34.	0.0	1