List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7930339/publications.pdf Version: 2024-02-01

ΝΛΜΚΤΡΛΝ

#	Article	IF	CITATIONS
1	Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 2019, 6, 2374289519873088.	0.7	206
2	Multiplex polymerase chain reaction detection enhancement of bacteremia and fungemia*. Critical Care Medicine, 2008, 36, 1487-1492.	0.4	153
3	Identification of Gram-Negative Bacteria and Genetic Resistance Determinants from Positive Blood Culture Broths by Use of the Verigene Gram-Negative Blood Culture Multiplex Microarray-Based Molecular Assay. Journal of Clinical Microbiology, 2015, 53, 2460-2472.	1.8	124
4	Katrina, the Tsunami, and Point-of-Care Testing. American Journal of Clinical Pathology, 2006, 126, 513-520.	0.4	78
5	Neutrophil Gelatinase-Associated Lipocalin: Ready for Routine Clinical Use? An International Perspective. Blood Purification, 2014, 37, 271-285.	0.9	78
6	SARS-CoV-2 induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. Nature Communications, 2021, 12, 541.	5.8	66
7	Clinical Performance of the Point-of-Care cobas Liat for Detection of SARS-CoV-2 in 20 Minutes: a Multicenter Study. Journal of Clinical Microbiology, 2021, 59, .	1.8	64
8	Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: A proof of concept. Burns, 2019, 45, 1350-1358.	1.1	57
9	Evaluation of point-of-care glucose testing accuracy using locally-smoothed median absolute difference curves. Clinica Chimica Acta, 2008, 389, 31-39.	0.5	56
10	Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: a proof of concept. Scientific Reports, 2021, 11, 8219.	1.6	55
11	Nasopharyngeal SARS-CoV-2 viral loads in young children do not differ significantly from those in older children and adults. Scientific Reports, 2021, 11, 3044.	1.6	54
12	Point-of-Care Testing and Cardiac Biomarkers: The Standard of Care and Vision for Chest Pain Centers. Cardiology Clinics, 2005, 23, 467-490.	0.9	48
13	Bedside Glucose Monitoring—Is it Safe? A New, Regulatory-Compliant Risk Assessment Evaluation Protocol in Critically III Patient Care Settings*. Critical Care Medicine, 2017, 45, 567-574.	0.4	45
14	Early Recognition of Burn- and Trauma-Related Acute Kidney Injury: A Pilot Comparison of Machine Learning Techniques. Scientific Reports, 2020, 10, 205.	1.6	43
15	Best practices in mitigating the risk of biotin interference with laboratory testing. Clinical Biochemistry, 2019, 74, 1-11.	0.8	40
16	Computing the Surveillance Error Grid Analysis. Journal of Diabetes Science and Technology, 2014, 8, 673-684.	1.3	37
17	Thermal Stress and Point-of-Care Testing Performance: Suitability of Glucose Test Strips and Blood Gas Cartridges for Disaster Response. Disaster Medicine and Public Health Preparedness, 2009, 3, 13-17.	0.7	36
18	Development and evaluation of a novel smart device-based application for burn assessment and management. Burns, 2015, 41, 754-760.	1.1	29

#	Article	IF	CITATIONS
19	Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept. Scientific Reports, 2020, 10, 12354.	1.6	28
20	Machine learning in health care and laboratory medicine: General overview of supervised learning and Autoâ€ML. International Journal of Laboratory Hematology, 2021, 43, 15-22.	0.7	28
21	Early clinical complete blood count changes in severe burn injuries. Burns, 2019, 45, 97-102.	1.1	27
22	Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. Clinical Chemistry, 2021, 68, 125-133.	1.5	27
23	Point-of-Care Testing for Disasters: Needs Assessment, Strategic Planning, and Future Design. Clinics in Laboratory Medicine, 2009, 29, 583-605.	0.7	26
24	Whole blood neutrophil gelatinase–associated lipocalin predicts acute kidney injury in burn patients. Journal of Surgical Research, 2015, 196, 382-387.	0.8	26
25	Assessing the Performance of Handheld Glucose Testing for Critical Care. Diabetes Technology and Therapeutics, 2008, 10, 445-451.	2.4	24
26	Gap Analysis of Pharmacokinetics and Pharmacodynamics in Burn Patients. Journal of Burn Care and Research, 2015, 36, e194-e211.	0.2	24
27	Enhancing crisis standards of care using innovative point-of-care testing. American Journal of Disaster Medicine, 2011, 6, 351-368.	0.1	24
28	Multiplex polymerase chain reaction pathogen detection in patients with suspected septicemia after trauma, emergency, and burn surgery. Surgery, 2012, 151, 456-463.	1.0	21
29	Investigating Transfusion-related Sepsis Using Culture-Independent Metagenomic Sequencing. Clinical Infectious Diseases, 2020, 71, 1179-1185.	2.9	21
30	Relationship of Cerebrospinal Fluid Vitamin B12 Status Markers With Parkinson's Disease Progression. Movement Disorders, 2020, 35, 1466-1471.	2.2	21
31	Clinical Impact of Sample Interference on Intensive Insulin Therapy in Severely Burned Patients. Journal of Burn Care and Research, 2014, 35, 72-79.	0.2	20
32	Worldwide Point-of-Care Testing. Point of Care, 2006, 5, 84-92.	0.5	18
33	Clinical Impact of Accurate Point-of-Care Glucose Monitoring for Tight Glycemic Control in Severely Burned Children*. Pediatric Critical Care Medicine, 2016, 17, e406-e412.	0.2	18
34	Sodium variability is associated with increased mortality in severe burn injury. Burns and Trauma, 2017, 5, 34.	2.3	18
35	Evidence-Based Point-of-Care Device Design for Emergency and Disaster Care. Point of Care, 2010, 9, 65-69.	0.5	17
36	Traumatic injury clinical trial evaluating tranexamic acid in children (TIC-TOC): study protocol for a pilot randomized controlled trial. Trials, 2018, 19, 593.	0.7	16

#	Article	IF	CITATIONS
37	Future Connectivity for Disaster and Emergency Point of Care. Point of Care, 2010, 9, 185-192.	0.5	15
38	Development of novel smart device based application for serial wound imaging and management. Burns, 2013, 39, 1395-1402.	1.1	15
39	Point-of-Care B-Type Natriuretic Peptide and Neutrophil Gelatinase-Associated Lipocalin Measurements for Acute Resuscitation. Journal of Burn Care and Research, 2015, 36, e26-e33.	0.2	14
40	Continuous noninvasive hemoglobin monitoring: The standard of care and future impact*. Critical Care Medicine, 2011, 39, 2369-2371.	0.4	13
41	Point-of-Care Testing at the Disaster–Emergency–Critical Care Interface. Point of Care, 2012, 11, 180-183.	0.5	12
42	Development and Implementation of an Innovative Burn Nursing Handbook for Quality Improvement. Journal of Burn Care and Research, 2016, 37, 20-24.	0.2	12
43	Clinical risk assessment of biotin interference with a high-sensitivity cardiac troponin T assay. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1931-1940.	1.4	12
44	Point-of-care COVID-19 testing in the emergency department: current status and future prospects. Expert Review of Molecular Diagnostics, 2021, 21, 1-8.	1.5	12
45	Design of a cost-effective, hemodynamically adjustable model for resuscitative endovascular balloon occlusion of the aorta (REBOA) simulation. Journal of Trauma and Acute Care Surgery, 2016, 81, 606-611.	1.1	11
46	Automated En Masse Machine Learning Model Generation Shows Comparable Performance as Classic Regression Models for Predicting Delayed Graft Function in Renal Allografts. Transplantation, 2021, 105, 2646-2654.	0.5	11
47	A Multicenter Evaluation of a Point-of-Care Blood Glucose Meter System in Critically Ill Patients. journal of applied laboratory medicine, The, 2021, 6, 820-833.	0.6	11
48	Universal Screening for Hepatitis C Virus in the ED Using a Best Practice Advisory. Western Journal of Emergency Medicine, 2021, 22, 719-725.	0.6	11
49	Identification of Cytochrome P450 Polymorphisms in Burn Patients and Impact on Fentanyl Pharmacokinetics: A Pilot Study. Journal of Burn Care and Research, 2019, 40, 91-96.	0.2	10
50	Longitudinal profiling of the burn patient cutaneous and gastrointestinal microbiota: a pilot study. Scientific Reports, 2021, 11, 10667.	1.6	10
51	Mapping point-of-care performance using locally-smoothed median and maximum absolute difference curves. Clinical Chemistry and Laboratory Medicine, 2011, 49, 1637-46.	1.4	9
52	A Retrospective Analysis of Clinical Laboratory Interferences Caused by Frequently Administered Medications in Burn Patients. Journal of Burn Care and Research, 2016, 37, e10-e17.	0.2	9
53	Prospective study of serum and ionized magnesium pharmacokinetics in the treatment of children with severe acute asthma. European Journal of Clinical Pharmacology, 2019, 75, 59-66.	0.8	9
54	Enhancing Military Burn- and Trauma-Related Acute Kidney Injury Prediction Through an Automated Machine Learning Platform and Point-of-Care Testing. Archives of Pathology and Laboratory Medicine, 2021, 145, 320-326.	1.2	9

#	Article	IF	CITATIONS
55	Locally Smoothed Median Absolute Difference Curves and the First Global Performance Cooperative. Point of Care, 2009, 8, 45-52.	0.5	8
56	Prospective observational study of point-of-care creatinine in trauma. Trauma Surgery and Acute Care Open, 2016, 1, e000014.	0.8	8
57	Diagnostic Reclassification by a High-Sensitivity Cardiac Troponin Assay. Annals of Emergency Medicine, 2020, 76, 566-579.	0.3	8
58	Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future. Clinical Biochemistry, 2023, 117, 10-15.	0.8	8
59	Global standardization and improved technologies for point-of-care glucose testing. Clinica Chimica Acta, 2008, 391, 127-128.	0.5	6
60	Implementation of High-Sensitivity Cardiac Troponin: Challenges From the International Experience. Critical Pathways in Cardiology, 2018, 17, 173-178.	0.2	6
61	Acetaminophen interference with Nova StatStrip [®] Glucose Meter: case report with bench top confirmation. Clinical Toxicology, 2020, 58, 1067-1070.	0.8	6
62	Rapid Diagnosis of Sepsis. Point of Care, 2003, 2, 163-171.	0.5	5
63	Assessing Thrombin Generation at the Point of Care. Clinical Chemistry, 2009, 55, 398-399.	1.5	5
64	Quantitative Point-of-Care Pathogen Detection in Septicemia. Point of Care, 2008, 7, 107-110.	0.5	4
65	Knowledge ⇒ Education ⇒ Mind Connectivity. Point of Care, 2008, 7, 69-71.	0.5	4
66	Multiplex PCR Pathogen Detection in Two Severely Burned Patients With Suspected Septicemia. Journal of Burn Care and Research, 2011, 32, e172-e177.	0.2	4
67	Risk Factors for Syphilis at a Large Urban Emergency Department. Sexually Transmitted Diseases, 2022, 49, 105-110.	0.8	4
68	Point-of-care glucose testing in critically ill patients: Visual logistics and a glycemic variability hypothesis*. Critical Care Medicine, 2009, 37, 2841-2843.	0.4	3
69	Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data. Journal of Pathology Informatics, 2022, 13, 100172.	0.8	3
70	Guidelines for Home Testing in Primary Care. Point of Care, 2006, 5, 145-154.	0.5	2
71	Aiding infection analysis and diagnosis through temporally-contextualized matrix representations. , 2017, , .		2
72	The Impact of Point-of-Care Polymerase Chain Reaction Testing on Prescribing Practices in Primary Care for Management of Strep A: A Retrospective Before–After Study. Open Forum Infectious Diseases, 2022, 9, ofac147.	0.4	2

#	Article	IF	CITATIONS
73	Traumatic injury clinical trial evaluating tranexamic acid in children (<scp>TICâ€TOC</scp>): A pilot randomized trial. Academic Emergency Medicine, 2022, 29, 862-873.	0.8	2
74	Evolution of COVID-19 Testing and the Role of Rapid Antigen Testing in a Molecular-Focused World. Archives of Pathology and Laboratory Medicine, 2022, 146, 404-406.	1.2	2
75	Identification of Endogenous Peptides in Nasal Swab Transport Media used in MALDI-TOF-MS Based COVID-19 Screening. ACS Omega, 0, , .	1.6	2
76	Economic Implications of Optimal Diagnosis and Treatment of Sepsis – Work in Progress: Marginal Penalties, Antibiotic Alterations, and Outcome Hypotheses. Scandinavian Journal of Clinical and Laboratory Investigation, 2003, 63, 16-26.	0.6	1
77	The Grand Point-of-Care Challenge. Point of Care, 2008, 7, 105-107.	0.5	1
78	Does Regulatory Really Intersect Reality in Glucose Measurement in the ICU? Is the Issue Testing Method Accuracy or Specimen Type?. Critical Care Medicine, 2017, 45, e1186-e1188.	0.4	1
79	An insulin-dose error assessment grid: A new tool to evaluate glucose meter performance. Clinical Biochemistry, 2019, 70, 30-33.	0.8	1
80	Characterizing Fentanyl Variability Using Population Pharmacokinetics in Pediatric Burn Patients. Journal of Burn Care and Research, 2020, 41, 8-14.	0.2	1
81	Enrollment with and without exception from informed consent in a pilot trial of tranexamic acid in children with hemorrhagic injuries. Academic Emergency Medicine, 2021, , .	0.8	1
82	ED syphilis and gonorrhea/chlamydia cotesting practices before and after the implementation of an electronic health record-based alert. Emergency Medicine Journal, 2022, 39, 753-759.	0.4	1
83	Comparing Hepatitis C Virus Screening in Clinics Versus the Emergency Department. Western Journal of Emergency Medicine, 2022, 23, 312-317.	0.6	1
84	Point-of-care glucose testing in critically ill patients: Visual logistics and a glycemic variability hypothesis *. Critical Care Medicine, 2009, 37, 2841-2843.	0.4	0
85	Sampling Theory for Molecular- and Blood Culture-Based Techniques. Point of Care, 2013, 12, 52-57.	0.5	0
86	Point-of-care 3D body-mapping for determining total body surface area of severely burned patients. , 2019, , .		0
87	511 Point-of-care 3-dimensional Body Mapping for Determining Total Body Surface Area in Severely Burned Patients. Journal of Burn Care and Research, 2020, 41, S92-S93.	0.2	0
88	7 Artificial Intelligence and Machine Learning as a Predictive Tool for Acute Kidney Injury in Trauma and Severely Burned Patients. Journal of Burn Care and Research, 2020, 41, S7-S8.	0.2	0
89	The prevalence of elevated biotin in patient cohorts presenting for routine endocrinology, sepsis, and infectious disease testing. Clinical Biochemistry, 2021, 99, 118-118.	0.8	0