List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7930208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caffeine photocatalytic degradation using composites of NiO/TiO2–F and CuO/TiO2–F under UV irradiation. Chemosphere, 2022, 288, 132506.	4.2	22
2	Investigation of Weight Fraction and Alkaline Treatment on Catechu Linnaeus/Hibiscus cannabinus/Sansevieria Ehrenbergii Plant Fibers-Reinforced Epoxy Hybrid Composites. Advances in Materials Science and Engineering, 2022, 2022, 1-9.	1.0	17
3	A Review on the Effect of Various Chemical Treatments on the Mechanical Properties of Renewable Fiber-Reinforced Composites. Advances in Materials Science and Engineering, 2022, 2022, 1-24.	1.0	21
4	Glycerol Valorization towards a Benzoxazine Derivative through a Milling and Microwave Sequential Strategy. Molecules, 2022, 27, 632.	1.7	3
5	Performance Evaluation of Cyclic Stability and Capacitance of Manganese Oxide Modified Graphene Oxide Nanocomposite for Potential Supercapacitor Applications. Journal of Nanomaterials, 2022, 2022, 1-8.	1.5	7
6	Mechanical and Durability Studies on Ficus exasperata Leaf Ash Concrete. Advances in Civil Engineering, 2022, 2022, 1-10.	0.4	0
7	Integrating Nanomaterial and High-Performance Fuzzy-Based Machine Learning Approach for Green Energy Conversion. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	16
8	Understanding flow chemistry for the production of active pharmaceutical ingredients. IScience, 2022, 25, 103892.	1.9	16
9	Artificial Coal: Facile and Green Production Method via Low-Temperature Hydrothermal Carbonization of Lignocellulose. ACS Sustainable Chemistry and Engineering, 2022, 10, 3335-3345.	3.2	9
10	Investigation of Reinforced Concrete Column Containing Metakaolin and Fly Ash Cementitious Materials. Advances in Civil Engineering, 2022, 2022, 1-13.	0.4	2
11	Effects on the Physicochemical Properties of Hydrochar Originating from Deep Eutectic Solvent (Urea) Tj ETQq1 1 Chemistry and Engineering, 2022, 10, 4258-4268.	0.78431 3.2	4 rgBT /Ov∈ 37
12	The three-tails approach as a new strategy to improve selectivity of action of sulphonamide inhibitors against tumour-associated carbonic anhydrase IX and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 930-939.	2.5	19
13	Aromatic Sulfonamides including a Sulfonic Acid Tail: New Membrane Impermeant Carbonic Anhydrase Inhibitors for Targeting Selectively the Cancer-Associated Isoforms. International Journal of Molecular Sciences, 2022, 23, 461.	1.8	12
14	Esterification of an Agro-Industrial Waste on Kaolinite-Derived Catalyst Prepared via Microwave Irradiation. Waste and Biomass Valorization, 2022, 13, 3933-3944.	1.8	7
15	The inhibitory effect of boric acid on hypoxia-regulated tumour-associated carbonic anhydrase IX. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1340-1345.	2.5	5
16	Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Archives of Biochemistry and Biophysics, 2021, 700, 108771.	1.4	15
17	Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach. Molecular Diversity, 2021, 25, 1979-1997.	2.1	21
18	Synthesis, characterization and comparative thermal degradation kinetics of s-Triazine based polymers. Journal of Polymer Research, 2021, 28, 1.	1.2	3

#	Article	IF	CITATIONS
19	Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. European Journal of Medicinal Chemistry, 2021, 226, 113875.	2.6	15
20	Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. New Journal of Chemistry, 2021, 45, 13909-13924.	1.4	43
21	Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium <i>Vibrio cholerae</i> with aromatic sulphonamides and clinically licenced drugs – a joint docking/molecular dynamics study. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 469-479.	2.5	14
22	Experimental Study on the Sound Absorption Properties of Finger Millet Straw, Darbha, and Ripe Bulrush Fibers. Advances in Materials Science and Engineering, 2021, 2021, 1-12.	1.0	6
23	Phosphonamidates are the first phosphorus-based zinc binding motif to show inhibition of β-class carbonic anhydrases from bacteria, fungi, and protozoa. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 59-64.	2.5	11
24	Inhibition survey with phenolic compounds against the δ- and Îclass carbonic anhydrases from the marine diatom <i>thalassiosira weissflogii</i> and protozoan <i>Plasmodium falciparum</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 377-382.	2.5	8
25	"A Sweet Combinationâ€: Developing Saccharin and Acesulfame K Structures for Selectively Targeting the Tumor-Associated Carbonic Anhydrases IX and XII. Journal of Medicinal Chemistry, 2020, 63, 321-333.	2.9	27
26	Benzothiazole derivatives as anticancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 265-279.	2.5	140
27	Sulfonamide/sulfamate switch with a series of piperazinylureido derivatives: Synthesis, kinetic and in silico evaluation as carbonic anhydrase isoforms I, II, IV, and IX inhibitors. European Journal of Medicinal Chemistry, 2020, 186, 111896.	2.6	15
28	Immobilization of (tartrate-salen)Mn(III) polymer complexes into SBA-15 for catalytic asymmetric epoxidation of alkenes. Molecular Catalysis, 2020, 495, 111146.	1.0	5
29	Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. European Journal of Medicinal Chemistry, 2020, 190, 112112.	2.6	46
30	Oligomeric (Salen)Mn(III) Complexes Featuring Tartrate Linkers Immobilized over Layered Double Hydroxide for Catalytically Asymmetric Epoxidation of Unfunctionalized Olefins. Materials, 2020, 13, 4860.	1.3	3
31	Phenyl(thio)phosphon(amid)ate Benzenesulfonamides as Potent and Selective Inhibitors of Human Carbonic Anhydrases II and VII Counteract Allodynia in a Mouse Model of Oxaliplatin-Induced Neuropathy. Journal of Medicinal Chemistry, 2020, 63, 5185-5200.	2.9	16
32	Benign-by-design nature-inspired bionanoconjugates for energy conversion and storage applications. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100373.	3.2	5
33	Appliance of the piperidinyl-hydrazidoureido linker to benzenesulfonamide compounds: Synthesis, in vitro and in silico evaluation of potent carbonic anhydrase II, IX and XII inhibitors. Bioorganic Chemistry, 2020, 98, 103728.	2.0	15
34	Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co ₃ O ₄ -g-C ₃ N ₄ nanomaterials for the oxygen evolution reaction. Nanoscale, 2020, 12, 8477-8484.	2.8	14
35	Chitosan- <i>S</i> -triazinyl-bis(2-aminomethylpyridine) and Chitosan- <i>S</i> -triazinyl-bis(8-oxyquinoline) Derivatives: New Reagents for Silver Nanoparticle Preparation and Their Effect of Antimicrobial Evaluation. Journal of Chemistry, 2020, 2020, 1-8.	0.9	5
36	<p>Simple Approaches for the Synthesis of AgNPs in Solution and Solid Phase Using Modified Methoxypolyethylene Glycol and Evaluation of Their Antimicrobial Activity</p> . International Journal of Nanomedicine, 2020, Volume 15, 2353-2362.	3.3	6

#	Article	IF	CITATIONS
37	Synthesis, characterisation, biological evaluation and <i>in silico</i> studies of sulphonamide Schiff bases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 950-962.	2.5	70
38	Recycling electronic waste: Prospects in green catalysts design. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100357.	3.2	13
39	Extending the \hat{I}^3 -class carbonic anhydrases inhibition profiles with phenolic compounds. Bioorganic Chemistry, 2019, 93, 103336.	2.0	13
40	Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholerae. Bioorganic Chemistry, 2019, 86, 183-186.	2.0	15
41	Benzenesulfonamides incorporating nitrogenous bases show effective inhibition of β-carbonic anhydrases from the pathogenic fungi Cryptococcus neoformans, Candida glabrata and Malassezia globosa. Bioorganic Chemistry, 2019, 86, 39-43.	2.0	8
42	Appraisal of anti-protozoan activity of nitroaromatic benzenesulfonamides inhibiting carbonic anhydrases from <i>Trypanosoma cruzi</i> and <i>Leishmania donovani</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1164-1171.	2.5	18
43	Activation Studies of the Î ³ -Carbonic Anhydrases from the Antarctic Marine Bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea with Amino Acids and Amines. Marine Drugs, 2019, 17, 238.	2.2	9
44	Synthesis of N′-phenyl-N-hydroxyureas and investigation of their inhibitory activities on human carbonic anhydrases. Bioorganic Chemistry, 2018, 78, 1-6.	2.0	9
45	Activation studies of the α- and β-carbonic anhydrases from the pathogenic bacterium <i>Vibrio cholerae</i> with amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 227-233.	2.5	19
46	Activation studies with amines and amino acids of the β-carbonic anhydrase encoded by the <i>Rv3273</i> gene from the pathogenic bacterium <i>Mycobacterium tuberculosis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 364-369.	2.5	16
47	The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom <i>Thalassiosira weissflogii</i> is effectively activated by amines and amino acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 680-685.	2.5	18
48	Comparison of the amine/amino acid activation profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium <i>Burkholderia pseudomallei</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 25-30.	2.5	15
49	Silver-embedded epoxy nanocomposites as organic coatings for steel. Progress in Organic Coatings, 2018, 123, 209-222.	1.9	24
50	Sulfonamide inhibition profiles of the β-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible of the febrile illness tularemia. Bioorganic and Medicinal Chemistry, 2017, 25, 3555-3561.	1.4	20
51	Synthesis of an acridine orange sulfonamide derivative with potent carbonic anhydrase IX inhibitory action. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 701-706.	2.5	11
52	Synthesis and carbonic anhydrase inhibition of a series of SLC-0111 analogs. Bioorganic and Medicinal Chemistry, 2017, 25, 2569-2576.	1.4	79
53	Sulfonamide inhibition profile of the γ-carbonic anhydrase identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 490-495.	1.0	25
54	Dithiocarbamates effectively inhibit the β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa. Bioorganic and Medicinal Chemistry, 2017, 25, 1260-1265.	1.4	45

#	Article	IF	CITATIONS
55	Cloning, expression and purification of the α-carbonic anhydrase from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1029-1035.	2.5	11
56	Inhibition of the β-carbonic anhydrase from the dandruff-producing fungus <i>Malassezia globosa</i> with monothiocarbamates. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1064-1070.	2.5	33
57	A one-step procedure for immobilising the thermostable carbonic anhydrase (SspCA) on the surface membrane of Escherichia coli. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1120-1128.	2.5	18
58	Anion inhibitors of the β-carbonic anhydrase from the pathogenic bacterium responsible of tularemia, Francisella tularensis. Bioorganic and Medicinal Chemistry, 2017, 25, 4800-4804.	1.4	13
59	1,3,5-Triazine-based polymer: synthesis, characterization and application for immobilization of silver nanoparticles. Journal of Polymer Research, 2017, 24, 1.	1.2	16
60	Carbonic anhydrase I, II, IV and IX inhibition with a series of 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 885-892.	2.5	10
61	Anion inhibition profiles of the Î ³ -carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics. Bioorganic and Medicinal Chemistry, 2017, 25, 575-580.	1.4	16
62	Burkholderia pseudomallei Î ³ -carbonic anhydrase is strongly activated by amino acids and amines. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 77-80.	1.0	26
63	Hydrazino-methoxy-1,3,5-triazine Derivatives' Excellent Corrosion Organic Inhibitors of Steel in Acidic Chloride Solution. Molecules, 2016, 21, 714.	1.7	23
64	Anion inhibition profiles of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry, 2016, 24, 3413-3417.	1.4	49
65	Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the Î-carbonic anhydrase from Plasmodium falciparum. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4184-4190.	1.0	37
66	Anion inhibition profiles of the complete domain of the Îcarbonic anhydrase from Plasmodium falciparum. Bioorganic and Medicinal Chemistry, 2016, 24, 4410-4414.	1.4	34
67	Dithiocarbamates with potent inhibitory activity against the <i>Saccharomyces cerevisiae</i> β -carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 132-136.	2.5	17
68	One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 159, 184-198.	2.0	13
69	Cloning, characterization and anion inhibition studies of a Î ³ -carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic and Medicinal Chemistry, 2016, 24, 835-840.	1.4	44
70	A new procedure for the cloning, expression and purification of the β-carbonic anhydrase from the pathogenic yeast <i>Malassezia globosa</i> , an anti-dandruff drug target. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1156-1161.	2.5	30
71	Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry, 2016, 24, 1115-1120.	1.4	57
72	Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1253-1259.	1.0	13

#	Article	IF	CITATIONS
73	Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1406-1410.	1.0	39
74	Comparison of the sulfonamide inhibition profiles of the α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1941-1946.	1.0	50
75	Expression and characterization of a recombinant psychrophilic Î ³ -carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 810-817.	2.5	7
76	Biochemical characterization of recombinant β-carbonic anhydrase (PgiCAb) identified in the genome of the oral pathogenic bacterium <i>Porphyromonas gingivalis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 366-370.	2.5	66
77	Cloning, characterization and anion inhibition studies of a new Î ³ -carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorganic and Medicinal Chemistry, 2015, 23, 4405-4409.	1.4	26
78	Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorganic and Medicinal Chemistry, 2015, 23, 4181-4187.	1.4	29
79	Microwave Synthesis of Copolymers Based on Itaconic Acid Moiety and Their Utility for Scavenging of Copper (II) and Lead (II). Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 561-576.	1.2	1
80	Dendrimers incorporating benzenesulfonamide moieties strongly inhibit carbonic anhydrase isoforms I–XIV. Organic and Biomolecular Chemistry, 2015, 13, 6453-6457.	1.5	13
81	Poly(amidoamine) Dendrimers with Carbonic Anhydrase Inhibitory Activity and Antiglaucoma Action. Journal of Medicinal Chemistry, 2015, 58, 4039-4045.	2.9	31
82	Anion inhibition studies of the dandruff-producing fungus Malassezia globosa β-carbonic anhydrase MgCA. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5194-5198.	1.0	27
83	Inhibition of mammalian carbonic anhydrase isoforms l–XIV with a series of phenolic acid esters. Bioorganic and Medicinal Chemistry, 2015, 23, 7181-7188.	1.4	26
84	Poly(amidoamine) dendrimers show carbonic anhydrase inhibitory activity against α-, β-, γ- and Îclass enzymes. Bioorganic and Medicinal Chemistry, 2015, 23, 6794-6798.	1.4	29
85	New series of sulfonamides containing amino acid moiety act as effective and selective inhibitors of tumor-associated carbonic anhydrase XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 430-434.	2.5	32
86	Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 275-279.	1.0	49
87	Synthesis of sulfonamides with effective inhibitory action against Porphyromonas gingivalis Î ³ -carbonic anhydrase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4006-4010.	1.0	21
88	Anion inhibition study of the β-class carbonic anhydrase (PgiCAb) from the oral pathogen Porphyromonas gingivalis. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4402-4406.	1.0	28
89	Sulfonamide inhibition study of the carbonic anhydrases from the bacterial pathogen Porphyromonas gingivalis: The β-class (PgiCAb) versus the γ-class (PgiCA) enzymes. Bioorganic and Medicinal Chemistry, 2014, 22, 4537-4543.	1.4	34
90	Anion inhibition studies of two new β-carbonic anhydrases from the bacterial pathogen Legionella pneumophila. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1127-1132.	1.0	49

SAMEH M OSMAN

#	Article	IF	CITATIONS
91	Sulfonamide inhibition studies of the \hat{I}^3 -carbonic anhydrase from the oral pathogen Porphyromonas gingivalis. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 240-244.	1.0	50
92	Microwave synthesis and thermal properties of polyacrylate derivatives containing itaconic anhydride moieties. Chemistry Central Journal, 2012, 6, 85.	2.6	6
93	Nitrogen containing polymers-based triazine: synthesis, characterization and its applications for scavenging of copper(II). , 0, 114, 242-250.		2