Erin L Mcclymont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7929303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue. Science, 2010, 328, 1550-1553.	12.6	179
2	Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica Et Cosmochimica Acta, 2017, 208, 285-301.	3.9	177
3	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	12.9	166
4	Pleistocene sea-surface temperature evolution: Early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth-Science Reviews, 2013, 123, 173-193.	9.1	149
5	Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry, 2010, 41, 214-220.	1.8	117
6	Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition. Geology, 2005, 33, 389.	4.4	90
7	Seaâ€surface temperature records of Termination 1 in the Gulf of California: Challenges for seasonal and interannual analogues of tropical Pacific climate change. Paleoceanography, 2012, 27, .	3.0	75
8	Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15042-15047.	7.1	74
9	A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature, 2018, 560, 76-79.	27.8	73
10	On the identification of a Pliocene time slice for data–model comparison. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120515.	3.4	69
11	Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nature Communications, 2013, 4, 2692.	12.8	68
12	Archaeol as a methanogen biomarker in ombrotrophic bogs. Organic Geochemistry, 2011, 42, 1279-1287.	1.8	65
13	Expansion of subarctic water masses in the North Atlantic and Pacific oceans and implications for midâ€Pleistocene ice sheet growth. Paleoceanography, 2008, 23, .	3.0	62
14	Oceanic forcing of the Marine Isotope StageÂ11Âinterglacial. Nature Geoscience, 2009, 2, 428-433.	12.9	53
15	Lessons from a high-CO ₂ world: an ocean view from  â^¼â€‰3Â years ago. Climate of the Past, 2020, 16, 1599-1615.	mjllion 3.4	52
16	Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water. Quaternary Science Reviews, 2015, 119, 54-65.	3.0	51
17	Distributions of geohopanoids in peat: Implications for the use of hopanoid-based proxies in natural archives. Geochimica Et Cosmochimica Acta, 2018, 224, 249-261.	3.9	50
18	Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: Implications for the U37K′ index and South African climate. Quaternary Science Reviews, 2005, 24, 1559-1572.	3.0	48

ERIN L MCCLYMONT

#	Article	IF	CITATIONS
19	Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial. Nature Geoscience, 2018, 11, 627-634.	12.9	47
20	The disappearance of Sphagnum imbricatum from Butterburn Flow, UK. Holocene, 2008, 18, 991-1002.	1.7	44
21	Preferential degradation of polyphenols from Sphagnum – 4-Isopropenylphenol as a proxy for past hydrological conditions in Sphagnum-dominated peat. Geochimica Et Cosmochimica Acta, 2015, 150, 74-89.	3.9	43
22	Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives. Global and Planetary Change, 2012, 92-93, 275-285.	3.5	41
23	Pyrolysis GC–MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat. Organic Geochemistry, 2011, 42, 1420-1435.	1.8	37
24	Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia. Nature Geoscience, 2018, 11, 772-776.	12.9	37
25	The n-alkane and sterol composition of living fen plants as a potential tool for palaeoecological studies. Organic Geochemistry, 2013, 59, 1-9.	1.8	36
26	Plioceneâ€Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific. Paleoceanography, 2016, 31, 895-913.	3.0	35
27	Interglacial intensity in the North Atlantic over the last 800 000 years: investigating the complexity of the midâ€ <scp>B</scp> runhes Event. Journal of Quaternary Science, 2013, 28, 343-348.	2.1	32
28	Silicic acid biogeochemistry in the Gulf of California: Insights from sedimentary Si isotopes. Paleoceanography, 2012, 27, .	3.0	31
29	Persistent warmth across the Benguela upwelling system during the Pliocene epoch. Earth and Planetary Science Letters, 2014, 386, 10-20.	4.4	30
30	Changing surface water conditions for the last 500 ka in the Southeast Atlantic: Implications for variable influences of Agulhas leakage and Benguela upwelling. Paleoceanography, 2015, 30, 1153-1167.	3.0	30
31	Deglacial changes in flow and frontal structure through the Drake Passage. Earth and Planetary Science Letters, 2017, 474, 397-408.	4.4	30
32	Long-term patterns of hillslope erosion by earthquake-induced landslides shape mountain landscapes. Science Advances, 2020, 6, eaaz6446.	10.3	30
33	Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorfer Moor (Germany). Organic Geochemistry, 2016, 97, 95-110.	1.8	29
34	Atlantic overturning circulation and Agulhas leakage influences on southeast Atlantic upper ocean hydrography during marine isotope stage 11. Paleoceanography, 2010, 25, .	3.0	22
35	Antarctic Intermediate Water properties since 400 ka recorded in infaunal (Uvigerina peregrina) and epifaunal (Planulina wuellerstorfi) benthic foraminifera. Earth and Planetary Science Letters, 2015, 428, 193-203.	4.4	22
36	The δ ¹⁸ O stratigraphy of the Hoxnian lacustrine sequence at Marks Tey, Essex, UK: implications for the climatic structure of MIS 11 in Britain. Journal of Quaternary Science, 2016, 31, 75-92.	2.1	21

ERIN L MCCLYMONT

#	Article	IF	CITATIONS
37	Are spherulitic lacustrine carbonates an expression of large-scale mineral carbonation? A case study from the East Kirkton Limestone, Scotland. Gondwana Research, 2017, 48, 101-109.	6.0	21
38	Highly variable Pliocene sea surface conditions in the Norwegian Sea. Climate of the Past, 2017, 13, 1153-1168.	3.4	20
39	Variation in the diet of killer whales Orcinus orca at Marion Island, Southern Ocean. Marine Ecology - Progress Series, 2016, 549, 263-274.	1.9	20
40	A combined biogeochemical and palaeobotanical approach to study permafrost environments and past dynamics. Journal of Quaternary Science, 2015, 30, 189-200.	2.1	19
41	Late Pliocene upwelling in the Southern Benguela region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429, 62-71.	2.3	19
42	Cordilleran ice-sheet growth fueled primary productivity in the Gulf of Alaska, northeast Pacific Ocean. Geology, 2018, 46, 307-310.	4.4	19
43	Benefits of freeze-drying sediments for the analysis of total chlorins and alkenone concentrations in marine sediments. Organic Geochemistry, 2007, 38, 1002-1007.	1.8	18
44	Oceanographic and climatic evolution of the southeastern subtropical Atlantic over the last 3.5 Ma. Earth and Planetary Science Letters, 2018, 492, 12-21.	4.4	18
45	Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution. Nature Communications, 2016, 7, 11970.	12.8	16
46	Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures. Climate of the Past, 2020, 16, 299-313.	3.4	14
47	Lowâ€frequency Pliocene climate variability in the eastern Nordic Seas. Paleoceanography, 2016, 31, 1154-1175.	3.0	12
48	Sea surface temperature variability in the Norwegian Sea during the late Pliocene linked to subpolar gyre strength and radiative forcing. Earth and Planetary Science Letters, 2016, 446, 113-122.	4.4	12
49	Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate. Journal of the Geological Society, 2021, 178, .	2.1	12
50	Alkenones and coccoliths in iceâ€rafted debris during the Last Glacial Maximum in the North Atlantic: implications for the use of U ^K ₃₇ ′ as a sea surface temperature proxy. Journal of Quaternary Science, 2011, 26, 657-664.	2.1	11
51	Plant macrofossil and biomarker evidence of fen–bog transition and associated changes in vegetation in two Finnish peatlands. Holocene, 2014, 24, 828-841.	1.7	10
52	Chapter Eleven Biomarkers as Paleoceanographic Proxies. Developments in Marine Geology, 2007, , 441-490.	0.4	9
53	Evaluation of Mumiyo Deposits From East Antarctica as Archives for the Late Quaternary Environmental and Climatic History. Geochemistry, Geophysics, Geosystems, 2019, 20, 260-276.	2.5	8
54	Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas. Biogeosciences, 2021, 18, 3485-3504.	3.3	6

#	Article	IF	CITATIONS
55	Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (<i>Pagodroma nivea</i>) stomach-oil deposits. Climate of the Past, 2022, 18, 381-403.	3.4	6
56	Orbital and Suborbital‣cale Variations of Productivity and Sea Surface Conditions in the Gulf of Alaska During the Past 54,000ÂYears: Impact of Iron Fertilization by Icebergs and Meltwater. Paleoceanography and Paleoclimatology, 2022, 37, e2021PA004385.	2.9	5
57	Plioâ€Pleistocene Ocean Circulation Changes in the Gulf of Alaska and Its Impacts on the Carbon and Nitrogen Cycles and the Cordilleran Ice SheetÂDevelopment. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	4
58	Mg/Ca-Temperature Calibration of Polar Benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf. Geochimica Et Cosmochimica Acta, 2020, 283, 54-66.	3.9	2
59	Towards a marine synthesis of late Pliocene climate variability. Past Global Change Magazine, 2017, 25, 117-117.	0.1	1