Paula M Wood-Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7929056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene. Macromolecules, 2000, 33, 7489-7499.	2.2	470
2	Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polymer Degradation and Stability, 2012, 97, 554-565.	2.7	251
3	Thermorheological Behavior of Polyethylene:  Effects of Microstructure and Long Chain Branching. Macromolecules, 2001, 34, 6281-6290.	2.2	182
4	Using Rheological Data To Determine the Branching Level in Metallocene Polyethylenes. Macromolecules, 2000, 33, 7481-7488.	2.2	144
5	Fractionation of Semicrystalline Polymers by Crystallization Analysis Fractionationand Temperature Rising Elution Fractionation. Advances in Polymer Science, 2005, , 1-54.	0.4	129
6	Molecular Structure of Metallocene-Catalyzed Polyethylene:Â Rheologically Relevant Representation of Branching Architecture in Single Catalyst and Blended Systems. Macromolecules, 2002, 35, 2514-2528.	2.2	78
7	Production of porous polylactic acid monoliths via nonsolvent induced phase separation. Polymer, 2014, 55, 6743-6753.	1.8	77
8	A gelation mechanism for gelatin/polysaccharide aqueous mixtures. Food Hydrocolloids, 2018, 79, 462-472.	5.6	60
9	Molecular structure of high melt strength polypropylene and its application to polymer design. Polymer, 2003, 44, 7181-7188.	1.8	56
10	A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 28-35.	2.3	51
11	Effect of operation parameters on temperature rising elution fractionation and crystallization analysis fractionation. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1762-1778.	2.4	50
12	Crystallization of polylactide films: An atomic force microscopy study ofÂthe effects of temperature and blending. Polymer, 2008, 49, 2306-2320.	1.8	50
13	Effect of molecular weight and average comonomer content on the crystallization analysis fractionation (Crystaf) of ethylene α-olefin copolymers. Polymer, 2003, 44, 2393-2401.	1.8	46
14	Broad frequency range characterization of molten polymers. Journal of Rheology, 2004, 48, 711-724.	1.3	42
15	Distribution of the Longest Ethylene Sequence in Ethylene/α-Olefin Copolymers Synthesized with Single-Site-Type Catalysts. Macromolecular Theory and Simulations, 2002, 11, 326.	0.6	41
16	Isothermal ternary phase diagram of the polylactic acid-dichloromethane-hexane system. Polymer, 2014, 55, 3100-3106.	1.8	41
17	Complex Morphology Formation in Electrospinning of Binary and Ternary Poly(lactic acid) Solutions. Macromolecules, 2018, 51, 4094-4107.	2.2	40
18	Cocrystallization of Blends of Ethylene/1-Olefin Copolymers: An Investigation with Crystallization Analysis Fractionation(Crystaf). Macromolecular Chemistry and Physics, 2004, 205, 771-777.	1.1	37

PAULA M WOOD-ADAMS

#	Article	IF	CITATIONS
19	New method for the synthesis of clay/epoxy nanocomposites. Journal of Applied Polymer Science, 2006, 100, 4286-4296.	1.3	34
20	Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol–gel process. Materials Science and Engineering C, 2014, 40, 248-252.	3.8	34
21	Wall Slip of Bidisperse Linear Polymer Melts. Macromolecules, 2014, 47, 3154-3160.	2.2	27
22	Chemical Composition Distribution of Multicomponent Copolymers. Macromolecular Theory and Simulations, 2003, 12, 229-236.	0.6	24
23	Measuring local viscoelastic properties of complex materials with tapping mode atomic force microscopy. Polymer, 2006, 47, 4798-4810.	1.8	22
24	A technique to infer structural information for low level long chain branched polyethylenes. Polymer, 2004, 45, 3747-3754.	1.8	21
25	Rheological properties of crystallizing polylactide: Detection of induction time and modeling the evolving structure and properties. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 812-822.	2.4	21
26	In situ polymerization of polyester-based hybrid systems for the preparation of clay nanocomposites. Polymer, 2013, 54, 1512-1523.	1.8	17
27	Morphology of polylactic acid crystallized during annealing after uniaxial deformation. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 430-440.	2.4	15
28	Influence of Fluid Cell Design on the Frequency Response of AFM Microcantilevers in Liquid Media. Sensors, 2008, 8, 5927-5941.	2.1	14
29	Crystallization of polylactic acid under <i>in situ</i> deformation during nonsolventâ€induced phase separation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1055-1062.	2.4	14
30	Flame-made TiO 2 (B). Materials Research Bulletin, 2018, 106, 276-281.	2.7	13
31	Linear viscoelasticity of immiscible blends: The application of creep. Journal of Rheology, 2012, 56, 1039-1056.	1.3	12
32	Characterizing the structural formation of epoxy-amine networks: The effect of monomer geometry. Polymer, 2016, 104, 83-90.	1.8	12
33	Wall Slip of Tridisperse Polymer Melts and the Effect of Unentangled versus Weakly Entangled Chains. Macromolecules, 2014, 47, 8033-8040.	2.2	11
34	Photopolymerization Using Metal Oxide Semiconducting Nanoparticles for Epoxy-Based Coatings and Patterned Films. ACS Applied Nano Materials, 2020, 3, 2875-2880.	2.4	11
35	Effect of surface nucleation on isothermal crystallization kinetics: Theory, simulation and experiment. Polymer, 2011, 52, 708-717.	1.8	10
36	Crystallization of Poly(<scp>L</scp> â€I <scp>D</scp> â€Lactide) in the Presence of Electric Fields. Macromolecular Chemistry and Physics, 2012, 213, 635-642.	1.1	10

PAULA M WOOD-ADAMS

#	Article	IF	CITATIONS
37	Highly Porous Polymer Structures Fabricated via Rapid Precipitation from Ternary Systems. Industrial & Engineering Chemistry Research, 2017, 56, 11451-11459.	1.8	10
38	Chemical composition distribution of multicomponent copolymer chains. Macromolecular Symposia, 2004, 206, 69-78.	0.4	7
39	Fracture of unsaturated polyester and the limitation of layered silicates. Polymer Engineering and Science, 2015, 55, 1303-1309.	1.5	7
40	Short chains enhance slip of highly entangled polystyrenes during thin film dewetting. RSC Advances, 2016, 6, 91163-91170.	1.7	7
41	Metal Oxide Quantum Dots Embedded in Silica Matrices Made by Flame Spray Pyrolysis. ACS Omega, 2021, 6, 11411-11417.	1.6	7
42	An experimental and numerical study on crystallization analysis fractionation(Crystaf). Macromolecular Symposia, 2004, 206, 57-68.	0.4	6
43	Space-Filling Trialkoxysilane: Synthesis and Self-Assembly into Low-Density Monolayers. Langmuir, 2010, 26, 18628-18630.	1.6	6
44	Morphological analysis of highly filled propylene/ethylene copolymers. Journal of Applied Polymer Science, 2007, 105, 3758-3772.	1.3	5
45	A Monte Carlo Simulation of Homogeneous Crystallization in Confined Spaces: Effect of Crystallization Kinetics on the Avrami Exponent. Macromolecular Theory and Simulations, 2010, 19, 278-287.	0.6	5
46	Dependence of the Surface Structure of Polystyrene on Chain Molecular Weight Investigated by Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 3838-3845.	1.5	5
47	Influence of Polymer Molecular Weight on Chain Conformation at the Polystyrene/Silver Interface. Langmuir, 2021, 37, 10036-10045.	1.6	5
48	Measurement of fluid properties using an acoustically excited atomic force microscope micro-cantilever. Journal of Rheology, 2010, 54, 959-980.	1.3	4
49	Solvent diffusion in molten polystyrene under small amplitude oscillatory shear. Polymer, 2017, 132, 59-68.	1.8	4
50	Wall Slip of Bimodal Polyethylene. Macromolecules, 2022, 55, 4568-4577.	2.2	4
51	Simulation of gel permeation chromatography measurement for long chain branched metallocene polyethylene. Macromolecular Symposia, 2004, 206, 419-432.	0.4	3
52	Rheological behavior of filled propylene/ethylene copolymers. Rheologica Acta, 2008, 47, 33-48.	1.1	3
53	Modeling the delamination process during shear premixing of nanoclay/thermoset polymer nanocomposites. Journal of Applied Polymer Science, 2011, 122, 561-572.	1.3	3
54	Sacrificial mica substrates influence the slip boundary condition of dewetting polymer films. Polymer, 2015, 78, 202-207.	1.8	3

#	Article	IF	CITATIONS
55	Two-dimensional Fourier transform rheological study on thermosensitivity ofÂpoly(N,N-diethylacrylamide) in aqueous solutions. Polymer, 2012, 53, 4800-4805.	1.8	2
56	Effect of morphology on fracture toughness of unsaturated polyester-based hybrid nanocomposites. Polymer, 2015, 72, 154-164.	1.8	2
57	Evolution of Phase Morphology, Rheology, and Electrical Conductivity of PA6/POE Blends Containing Graphene during Annealing under SAOS. Macromolecules, 2022, 55, 2714-2728.	2.2	2
58	Simplified theory for linear rheology of monodisperse linear polymers. Journal of Applied Polymer Science, 2004, 94, 569-586.	1.3	1
59	A general method for obtaining diffusion coefficients by inversion of measured torque from diffusion experiments under small amplitude oscillatory shear. Rheologica Acta, 2018, 57, 551-561.	1.1	1
60	Photocuring Graphene Oxide Liquid Crystals for High-Strength Structural Materials. ACS Omega, 2022, 7, 21192-21198.	1.6	1
61	Using truncated relaxation spectra in the simulation of viscoelastic flows. Canadian Journal of Chemical Engineering, 2002, 80, 443-455.	0.9	0