
Sangil Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7929024/publications.pdf Version: 2024-02-01

SANCH HAN

#	Article	IF	CITATIONS
1	Recent Advances in Catalytic C(sp ²)–H Allylation Reactions. ACS Catalysis, 2017, 7, 2821-2847.	5.5	250
2	Decarboxylative acylation of indolines with α-keto acids under palladium catalysis: a facile strategy for the synthesis of 7-substituted indoles. Chemical Communications, 2014, 50, 14249-14252.	2.2	109
3	Rh(III)-Catalyzed Direct Coupling of Azobenzenes with α-Diazo Esters: Facile Synthesis of Cinnolin-3(2 <i>H</i>)-ones. Organic Letters, 2015, 17, 2852-2855.	2.4	108
4	Direct C–H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis. Chemical Communications, 2015, 51, 17229-17232.	2.2	106
5	Rhodium(III)â€Catalyzed Selective CH Cyanation of Indolines and Indoles with an Easily Accessible Cyano Source. Advanced Synthesis and Catalysis, 2015, 357, 1293-1298.	2.1	95
6	Rhodium(III)-Catalyzed C(sp ³)–H Alkylation of 8-Methylquinolines with Maleimides. Organic Letters, 2016, 18, 4666-4669.	2.4	95
7	Synthesis of (2 <i>H</i>)-Indazoles through Rh(III)-Catalyzed Annulation Reaction of Azobenzenes with Sulfoxonium Ylides. Journal of Organic Chemistry, 2018, 83, 4070-4077.	1.7	90
8	Synthesis of Succinimide-Containing Chromones, Naphthoquinones, and Xanthones under Rh(III) Catalysis: Evaluation of Anticancer Activity. Journal of Organic Chemistry, 2016, 81, 12416-12425.	1.7	88
9	Direct allylation of aromatic and α,β-unsaturated carboxamides under ruthenium catalysis. Chemical Communications, 2014, 50, 11303.	2.2	80
10	Access to 3-Acyl-(2 <i>H</i>)-indazoles via Rh(III)-Catalyzed C–H Addition and Cyclization of Azobenzenes with α-Keto Aldehydes. Organic Letters, 2016, 18, 232-235.	2.4	78
11	Mild Rh(III)-Catalyzed C7-Allylation of Indolines with Allylic Carbonates. Journal of Organic Chemistry, 2015, 80, 1818-1827.	1.7	76
12	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie - International Edition, 2018, 57, 12737-12740.	7.2	69
13	Direct and Site‧elective Palladium atalyzed Câ€7 Acylation of Indolines with Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 594-600.	2.1	63
14	Siteâ€Selective Rhodium(III)â€Catalyzed Câ^'H Amination of 7â€Azaindoles with Anthranils: Synthesis and Anticancer Evaluation. Advanced Synthesis and Catalysis, 2017, 359, 3471-3478.	2.1	62
15	Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones with Sulfonyl Azides: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2014, 79, 9262-9271.	1.7	61
16	Cp*Rh(<scp>iii</scp>)-catalyzed C(sp ³)–H alkylation of 8-methylquinolines in aqueous media. Chemical Communications, 2017, 53, 3006-3009.	2.2	60
17	Site-selective Cp*Rh(<scp>iii</scp>)-catalyzed C–H amination of indolines with anthranils. Organic Chemistry Frontiers, 2017, 4, 241-249.	2.3	58
18	Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2016, 358, 2714-2720.	2.1	56

SANGIL HAN

#	Article	IF	CITATIONS
19	Rh(III)-Catalyzed Oxidative Coupling of 1,2-Disubstituted Arylhydrazines and Olefins: A New Strategy for 2,3-Dihydro-1H-Indazoles. Organic Letters, 2014, 16, 2494-2497.	2.4	54
20	Direct access to isoindolines through tandem Rh(<scp>iii</scp>)-catalyzed alkenylation and cyclization of N-benzyltriflamides. Chemical Communications, 2014, 50, 2350-2352.	2.2	51
21	Rh-catalyzed oxidative C–C bond formation and C–N bond cleavage: direct access to C2-olefinated free (NH)-indoles and pyrroles. Organic and Biomolecular Chemistry, 2014, 12, 1703-1706.	1.5	51
22	Pd-Catalyzed Oxidative Coupling of Arene C–H Bonds with Benzylic Ethers as Acyl Equivalents. Journal of Organic Chemistry, 2014, 79, 275-284.	1.7	50
23	Rhodium-catalyzed mild and selective C–H allylation of indolines and indoles with 4-vinyl-1,3-dioxolan-2-one: facile access to indolic scaffolds with an allylic alcohol moiety. Tetrahedron, 2015, 71, 2435-2441.	1.0	49
24	Câ^'H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angewandte Chemie - International Edition, 2021, 60, 191-196.	7.2	47
25	Synthesis and C2-functionalization of indoles with allylic acetates under rhodium catalysis. Organic and Biomolecular Chemistry, 2013, 11, 7427.	1.5	44
26	Rh(III)-Catalyzed C–H Amidation of Indoles with Isocyanates. Journal of Organic Chemistry, 2015, 80, 7243-7250.	1.7	42
27	Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 2243-2251.	1.7	38
28	Siteâ€ S elective C–H Amidation of Azobenzenes with Dioxazolones under Rhodium Catalysis. European Journal of Organic Chemistry, 2016, 2016, 4976-4980.	1.2	35
29	Rh-catalyzed oxidative C2-alkenylation of indoles with alkynes: unexpected cleavage of directing group. Tetrahedron Letters, 2014, 55, 3104-3107.	0.7	32
30	Synthesis of N-Sulfonylamidated and Amidated Azobenzenes under Rhodium Catalysis. Journal of Organic Chemistry, 2015, 80, 8026-8035.	1.7	32
31	Rhodium-Catalyzed Vinylic C-H Functionalization of Enol Carbamates with Maleimides. European Journal of Organic Chemistry, 2016, 2016, 3611-3618.	1.2	32
32	Trifluoromethylallylation of Heterocyclic C–H Bonds with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 4771-4778.	1.7	31
33	C2-Selective C–H Methylation of Heterocyclic <i>N</i> -Oxides with Sulfonium Ylides. Organic Letters, 2020, 22, 9004-9009.	2.4	29
34	Site-Selective C–H Alkylation of Diazine <i>N</i> -Oxides Enabled by Phosphonium Ylides. Organic Letters, 2019, 21, 6488-6493.	2.4	27
35	Ru(II)-Catalyzed C–H Aminocarbonylation of <i>N</i> -(Hetero)aryl-7-azaindoles with Isocyanates. Journal of Organic Chemistry, 2018, 83, 4641-4649.	1.7	26
36	Copper-Catalyzed Oxidative C–O Bond Formation of 2-Acyl Phenols and 1,3-Dicarbonyl Compounds with Ethers: Direct Access to Phenol Esters and Enol Esters. Journal of Organic Chemistry, 2014, 79, 4735-4742.	1.7	24

Sangil Han

#	Article	IF	CITATIONS
37	C(sp ³)–H amination of 8-methylquinolines with azodicarboxylates under Rh(<scp>iii</scp>) catalysis: cytotoxic evaluation of quinolin-8-ylmethanamines. Chemical Communications, 2017, 53, 11197-11200.	2.2	22
38	Rhodium(III)-catalyzed heteroatom-directed C–H allylation with allylic phosphonates and allylic carbonates at room temperature. Tetrahedron, 2016, 72, 571-578.	1.0	21
39	Deoxygenative Amination of Azine- <i>N</i> -oxides with Acyl Azides via [3 + 2] Cycloaddition. Journal of Organic Chemistry, 2020, 85, 2476-2485.	1.7	21
40	Synthesis of (2 H)â€Indazoles from Azobenzenes Using Paraformaldehyde as a One arbon Synthon. Advanced Synthesis and Catalysis, 2019, 361, 1617-1626.	2.1	18
41	Synthesis and anti-inflammatory evaluation of N -sulfonyl anthranilic acids via Ir(III)-catalyzed C–H amidation of benzoic acids. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2129-2134.	1.0	16
42	Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate. Journal of Organic Chemistry, 2016, 81, 11353-11359.	1.7	14
43	Ru(ii)-Catalyzed C–H addition and oxidative cyclization of 2-aryl quinazolinones with activated aldehydes. Organic and Biomolecular Chemistry, 2020, 18, 9611-9622.	1.5	13
44	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie, 2018, 130, 12919-12922.	1.6	9
45	Synthesis of Phthalides through Tandem Rhodiumâ€Catalyzed C–H Olefination and Annulation of Benzamides. European Journal of Organic Chemistry, 2016, 2016, 3076-3083.	1.2	7
46	Câ^'H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angewandte Chemie, 2021, 133, 193-198.	1.6	5
47	Front Cover Picture: Siteâ€Selective Rhodium(III)â€Catalyzed Câ^H Amination of 7â€Azaindoles with Anthranils: Synthesis and Anticancer Evaluation (Adv. Synth. Catal. 20/2017). Advanced Synthesis and Catalysis, 2017, 359, 3469-3469.	2.1	2
48	Front Cover Picture: Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds (Adv. Synth. Catal. 17/2016). Advanced Synthesis and Catalysis, 2016, 358, 2713-2713.	2.1	0